Unveiling the Relevant Spatiotemporal Level Main WholeBrain Character

From Stairways
Revision as of 10:45, 11 October 2024 by Okradoor6 (talk | contribs) (Created page with "Sharing and pooling large amounts of non-human primate neuroimaging data offer new exciting opportunities to understand the primate brain. The potential of big data in non-hum...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Sharing and pooling large amounts of non-human primate neuroimaging data offer new exciting opportunities to understand the primate brain. The potential of big data in non-human primate neuroimaging could however be tremendously enhanced by combining such neuroimaging data with other types of information. Here we describe metadata that have been identified as particularly valuable by the non-human primate neuroimaging community, including behavioural, genetic, physiological and phylogenetic data.Myelin development during adolescence is becoming an area of growing interest in view of its potential relationship to cognition, behavior, and learning. While recent investigations suggest that both white matter (WM) and gray matter (GM) undergo protracted myelination during adolescence, quantitative relations between myelin development in WM and GM have not been previously studied. We quantitatively characterized the dependence of cortical GM, WM, and subcortical myelin density across the brain on age, gender, and puberty status during adolescence with the use of a novel macromolecular proton fraction (MPF) mapping method. Whole-brain MPF maps from a cross-sectional sample of 146 adolescents (age range 9-17 years) were collected. Myelin density was calculated from MPF values in GM and WM of all brain lobes, as well as in subcortical structures. In general, myelination of cortical GM was widespread and more significantly correlated with age than that of WM. Myelination of GM in the parietal lobe was found to have a significantly stronger age dependence than that of GM in the frontal, occipital, temporal and insular lobes. Myelination of WM in the temporal lobe had the strongest association with age as compared to WM in other lobes. Myelin density was found to be higher in males as compared to females when averaged across all cortical lobes, as well as in a bilateral subcortical region. Puberty stage was significantly correlated with myelin density in several cortical areas and in the subcortical GM. These findings point to significant differences in the trajectories of myelination of GM and WM across brain regions and suggest that cortical GM myelination plays a dominant role during adolescent development.Social exclusion refers to the experience of being disregarded or rejected by others and has wide-ranging negative consequences for well-being and cognition. Cyberball, a game where a ball is virtually tossed between players, then leads to the exclusion of the research participant, is a common method used to examine the experience of social exclusion. The neural correlates of social exclusion remain a topic of debate, particularly with regards to the role of the dorsal anterior cingulate cortex (dACC) and the concept of social pain. Here we conducted a quantitative meta-analysis using activation likelihood estimation (ALE) to identify brain activity reliably engaged by social exclusion during Cyberball task performance (Studies = 53; total N = 1,817 participants). Results revealed consistent recruitment in ventral anterior cingulate and posterior cingulate cortex, inferior and superior frontal gyri, posterior insula, and occipital pole. No reliable activity was observed in dACC. Using a probabilistic atlas to define dACC, fewer than 15% of studies reported peak coordinates in dACC. Meta-analytic connectivity mapping suggests patterns of co-activation are consistent with the topography of the default network. Reverse inference for cognition associated with reliable Cyberball activity computed in Neurosynth revealed social exclusion to be associated with cognitive terms Social, Autobiographical, Mental States, and Theory of Mind. Taken together, these findings highlight the role of the default network in social exclusion and warns against interpretations of the dACC as a key region involved in the experience of social exclusion in humans.Processing of fear is of crucial importance for human survival and it can generally occur at explicit and implicit conditions. It is worth noting that explicit and implicit fear processing produces different behavioral and neurophysiological outcomes. The present study capitalizes on the Activation Likelihood Estimation (ALE) method of meta-analysis to identify (a) the "core" network of fear processing in healthy individuals; (b) common and specific neural activations associated with explicit and implicit processing of fear. Following PRISMA guidelines, a total of 92 fMRI and PET studies were included in the meta-analysis. The overall analysis show that the core fear network comprises the amygdala, pulvinar, and fronto-occipital regions. Both implicit and explicit fear processing activated amygdala, declive, fusiform gyrus, and middle frontal gyrus, suggesting that these two types of fear processing share a common neural substrate. Explicit fear processing elicited more activations at the pulvinar and parahippocampal gyrus, suggesting visual attention/orientation and contextual association play important roles during explicit fear processing. In contrast, implicit fear processing elicited more activations at the cerebellum-amygdala-cortical pathway, indicating an 'alarm' system underlying implicit fear processing. These findings have shed light on the neural mechanism underlying fear processing at different levels of awareness.Electroencephalographic (EEG) source reconstruction is a powerful approach that allows anatomical localization of electrophysiological brain activity. Algorithms used to estimate cortical sources require an anatomical model of the head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When such scans are unavailable, a population average can be used for adults, but no average surface template is available for cortical source imaging in infants. To address this issue, we introduce a new series of 13 anatomical models for subjects between zero and 24 months of age. These templates are built from MRI averages and boundary element method (BEM) segmentation of head tissues available as part of the Neurodevelopmental MRI Database. this website Surfaces separating the pia mater, the gray matter, and the white matter were estimated using the Infant FreeSurfer pipeline. The surface of the skin as well as the outer and inner skull surfaces were extracted using a cube marching algorithm followed by Laplacian smoothing and mesh decimation. We post-processed these meshes to correct topological errors and ensure watertight meshes. Source reconstruction with these templates is demonstrated and validated using 100 high-density EEG recordings from 7-month-old infants. Hopefully, these templates will support future studies on EEG-based neuroimaging and functional connectivity in healthy infants as well as in clinical pediatric populations.Aberrant reward processing is a cardinal feature of various forms of psychopathology. However, recent research indicates that aberrant reward processing may manifest at temporally distinct substages and involve interdependent subcomponents of reward processing. To improve our understanding of both the temporal dynamics and distinct subcomponents of reward processing, we added an effort manipulation to the "doors" reward-task paradigm, to derive behavioral and event-related potential (ERP) measures of effort-based reward processing. Behavioral measures consisting of reaction time, response rate, and response rate change were used to index effort expenditure, and ERP measures were used to index attention allocated toward effort-completion cues, anticipation of reward, valuation of reward, and attention toward monetary feedback. Reduced response rate and slowing of response were evident during the high effort versus the low effort condition. ERP findings indicated increased attention to signals of high- compared to low-effort completion cues-as well as reduced anticipation of rewards, and reduced attention toward feedback information following high effort expenditure. Participants showing the most response-rate slowing evidenced the greatest reward devaluation following high versus low effort. Findings demonstrate that the addition of an effort expenditure manipulation to the doors reward paradigm produced reliable ERP and behavioral measures of effort-based reward processing, providing opportunities for future researchers to utilize the effort-doors task to parse the temporal dynamics of both anticipatory and consummatory reward processing components.
Estimate the time-course of the spread of key pathological markers and the onset of cognitive dysfunction in Alzheimer's disease.
In a cohort of 335 older adults, ranging in cognitive functioning, we estimated the time of initial changes of Aβ, tau, and decreases in cognition with respect to the time of Aβ-positivity.
Small effect sizes of change in CSF Aβ42 and regional Aβ PET were estimated to occur several decades before Aβ-positivity. Increases in CSF tau occurred 7-8 years before Aβ-positivity. Temporoparietal tau PET showed increases 4-5 years before Aβ-positivity. Subtle cognitive dysfunction was observed 4-6 years before Aβ-positivity.
Increases in tau and cognitive dysfunction occur years before commonly used thresholds for Aβ-positivity. Explicit estimates of the time for these events provide a clearer picture of the time-course of the amyloid cascade and identify potential windows for specific treatments.
Increases in tau and cognitive dysfunction occur years before commonly used thresholds for Aβ-positivity. Explicit estimates of the time for these events provide a clearer picture of the time-course of the amyloid cascade and identify potential windows for specific treatments.The human brain is a dynamic modular network that can be decomposed into a set of modules, and its activity changes continually over time. At rest, several brain networks, known as Resting-State Networks (RSNs), emerge and cross-communicate even at sub-second temporal scale. Here, we seek to decipher the fast reshaping in spontaneous brain modularity and its relationships with RSNs. We use Electro/Magneto-Encephalography (EEG/MEG) to track the dynamics of modular brain networks, in three independent datasets (N = 568) of healthy subjects at rest. We show the presence of strikingly consistent RSNs, and a splitting phenomenon of some of these networks, especially the default mode network, visual, temporal and dorsal attentional networks. We also demonstrate that between-subjects variability in mental imagery is associated with the temporal characteristics of specific modules, particularly the visual network. Taken together, our findings show that large-scale electrophysiological networks have modularity-dependent dynamic fingerprints at rest.
Although post-TAVI PAR is commonly seen, its exact evaluation, grading and the true impact on patients' survival are still debated. This single center study aimed to evaluate the effect of post transcatheter aortic valve implantation (TAVI) paravalvular aortic regurgitation (PAR) on patients' survival. The outcome was evaluated by the three most commonly used techniques just after TAVI in the interventional arena.
201 high risk patients with severe symptomatic aortic stenosis underwent TAVI with the self-expandable system. The severity of post-TAVI PAR was prospectively evaluated by aortography and transesophageal echocardiography (TEE) using a four-class scheme and hemodynamic evaluation by calculation of the regurgitation index (RI). Median follow up time was 763 days.
Post-TAVI PAR results of the three different modalities were concordant with each other (all p<0.001). Patients with grade 0-I PAR by aortography had better long term outcomes compared to those who had grade II-III PAR (unadjusted HR 1.