Juvenile spondyloartropathies

From Stairways
Revision as of 11:30, 22 October 2024 by Radarboy0 (talk | contribs) (Created page with "HIV-specific CD8+ T-cells play a central role in immune control of adult HIV, but their contribution in paediatric infection is less well-characterised. Previously, we identif...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

HIV-specific CD8+ T-cells play a central role in immune control of adult HIV, but their contribution in paediatric infection is less well-characterised. Previously, we identified a group of ART-naïve children with persistently undetectable plasma viraemia, termed 'elite controllers', and a second group who achieved aviraemia only transiently. To investigate the mechanisms of failure to maintain aviraemia, we characterized in three transient aviraemics (TAs), each of whom expressed the disease-protective HLA-B*8101, longitudinal HIV-specific T-cell activity and viral sequences. In two TAs, a CD8+ T-cell response targeting the immunodominant epitope TPQDLNTML ('Gag-TL9') was associated with viral control, followed by viral rebound and the emergence of escape variants with lower replicative capacity. Both TAs mounted variant-specific responses, but only at low functional avidity, resulting in immunological progression. By contrast, in TA-3, intermittent viraemic episodes followed aviraemia without virus escape oterventions are therefore required that likely include contributions from host immunity. The HIV-specific T-cell response plays a central role in immune control of adult HIV, often mediated through protective alleles such as HLA-B*57/5801/8101. However, due to the tolerogenic and type 2 biased immune response in early life, HLA-I-mediated immune suppression of viraemia is seldom observed in children. We describe a rare group of HLA-B*8101-positive, ART-naïve children who achieved aviraemia, albeit only transiently, and investigate the role of the CD8+ T-cell response in the establishment and loss of viral control. We identify a mechanism by which the HIV-specific response can achieve viraemic control without viral escape, that can be explored in strategies to achieve remission.Adeno-associated viruses (AAV) serve as vectors for therapeutic gene delivery. AAV9 vectors have been FDA approved, as Zolgensma®, for the treatment of spinal muscular atrophy and is being evaluated in clinical trials for the treatment of neurotropic and musculotropic diseases. A major hurdle for AAV-mediated gene delivery is the presence of pre-existing neutralizing antibodies in 40 to 80% of the general population. These pre-existing antibodies can reduce therapeutic efficacy through viral neutralization, and the size of the patient cohort eligible for treatment. In this study, cryo-electron microscopy and image reconstruction was used to define the epitopes of five anti-AAV9 monoclonal antibodies (MAbs); ADK9, HL2368, HL2370, HL2372, and HL2374, on the capsid surface. Three of these, ADK9, HL2370, and HL2374, bound on or near the icosahedral 3-fold axes, HL2368 to the 2/5-fold wall, and HL2372 to the region surrounding the 5-fold axes. Pseudo-atomic modeling enabled the mapping and identification of antibocumvent this issue by creating AAV variant vectors not recognized by pre-existing neutralizing antibodies. The mapping of the antigenic epitopes of five different monoclonal antibodies (MAbs) on AAV9, to recapitulate a polyclonal response, enabled the rational design of escape variants with minimal disruption to cell tropism and gene expression. This study, which included four newly developed and now commercially available MAbs, provides a platform for the engineering of rAAV9 vectors that can be used to deliver genes to patients with pre-exiting AAV antibodies.Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants including an envelope glycoprotein variant in β-strand c (V114M) of domain II. We have previously shown that the analogous β-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E β-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice, and increased virus sensitivity to ammonium chloride, as seen for alphavirboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.Since 2001, strains of porcine parvovirus (PPV), designated 27a-like strains, were observed in Europe, suggesting a predominance of these viruses over older strains. The reasons for the obvious evolutionary advantage are unknown. Here, a series of mutants containing amino acid replacements found in the predominant field strains were generated in a PPV-NADL2 background and their impact on replication efficiency and antibody binding activity was determined. Some amino acid substitutions observed in the 27a-like strains significantly increased viral fitness and decreased neutralization activity of sera raised against commercial vaccines and old virus strains (e.g. NADL2). Protein Tyrosine Kinase inhibitor These mutant viruses and a monoclonal antibody raised against a classical PPV strain defined an 27a-specific neutralizing epitope around amino acid 228 of the capsid protein VP2. Based on the analysis of the mutant viruses, it is hypothesized that the predominant factor for the global spread of the PPV-27a strain substitutions is an increased viral fitness of the 27a-like viruses, possibly supported by a partial immune selection. This is reminiscent to the evolution of canine parvovirus and worldwide replacement of the original virus by the so-called new antigenic types. Importance Porcine parvovirus is one of the most important causes of reproductive failure in swine. Recently, despite the continuous use of vaccines, "new" strains emerged, leading to the hypothesis that the emergence of new amino acid substitutions could be a viral adaptation to the immune response against the commercial vaccines. Our results indicate the amino acid substitutions observed in the 27a-like strains can modify viral fitness and antigenicity. However, an absolute immune escape was not evident.Rabies is an old zoonotic disease caused by rabies virus (RABV), but the pathogenic mechanism of RABV is still not completely understood. Lipid droplets have been reported to play a role in pathogenesis of several viruses. However, its role on RABV infection remains unclear. Here, we initially found that RABV infection upregulated lipid droplet (LD) production in multiple cells and mouse brains. After the treatment of atorvastatin, a specific inhibitor of LD, RABV replication in N2a cells decreased. Then we found that RABV infection could upregulate N-myc downstream regulated gene-1 (NDRG1), which in turn enhance the expression of diacylglycerol acyltransferase 1/2 (DGAT1/2). DGAT1/2 could elevate cellular triglycerides synthesis and ultimately promote intracellular LD formation. Furthermore, we found that RABV-M and RABV-G, which were mainly involved in the viral budding process, could colocalize with LDs, indicating that RABV might utilize LDs as a carrier to facilitate viral budding and eventually increase virus production. Taken together, our study reveals that lipid droplets are beneficial for RABV replication and their biogenesis is regulated via NDRG1-DGAT1/2 pathway, which provides novel potential targets for developing anti-RABV drugs. IMPORTANCE Lipid droplets have been proven to play an important role in viral infections, but its role in RABV infection has not yet been elaborated. Here, we find that RABV infection upregulates the generation of LDs by enhancing the expression of N-myc downstream regulated gene-1 (NDRG1). Then NDRG1 elevated cellular triglycerides synthesis by increasing the activity of diacylglycerol acyltransferase 1/2 (DGAT1/2), which promotes the biogenesis of LDs. RABV-M and RABV-G, which are the major proteins involved in viral budding, could utilize LDs as a carrier and transport to cell membrane, resulting in enhanced virus budding. Our findings will extend the knowledge of lipid metabolism in RABV infection and help to explore potential therapeutic targets for RABV.Porcine reproductive and respiratory syndrome virus is a major economically significant pathogen and has evolved several strategies to evade host's antiviral response and provide favorable conditions for survival. In the present study, we demonstrated that a host microRNA, miR-376b-3p, was upregulated by PRRSV infection through the viral components, nsp4 and nsp11, and miR-376b-3p can directly target tripartite motif-containing 22 (TRIM22) to impair its anti-PRRSV activity, thus facilitating the replication of PRRSV. Meanwhile, we found that TRIM22 induced degradation of the nucleocapsid protein (N) of PRRSV by interacting with N protein to inhibit PRRSV replication, and further study indicated that TRIM22 could enhance the activation of lysosomal pathway by interacting with LC3 to induce lysosomal degradation of N protein. In conclusion, PRRSV increased miR-376b-3p expression and hijacked the host miR-376b-3p to promote PRRSV replication by impairing the antiviral effect of TRIM22. Therefore, our finding outesponses and provided a new insight into the study of virus-host interactions.Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETsdy used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.