Cataract surgery within Norway 201019

From Stairways
Revision as of 13:28, 15 August 2024 by Buffetpan9 (talk | contribs) (Created page with "Fecundity in livestock is an economically important complex quantitative trait that is influenced by both genetics and the environment. However, the underlying genetic mechani...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Fecundity in livestock is an economically important complex quantitative trait that is influenced by both genetics and the environment. However, the underlying genetic mechanism of reproductive performance in goats has not been well investigated. To investigate the genomic basis of fecundity in goats, genomic sequencing data of the Jining grey goat (a high prolificacy breed in China) were collected, as well as data for other commonly available goat breeds, and a mass of genomic variants were generated after variation calling. We screened the Jining grey goat (20 individuals) using a selective sweep with the Asian wild goat population (5 individuals), and potential candidate genes were proposed, such as STIM1, ESR1, LRRC14B and SLC9A3. Among, STIM1 is a most promising one associated with high reproductive capacity. When compared to Chinese domestic goats with low fecundity (17 individuals), the genes including MLLT10, SPIRE2, TCF25, ZNF276 and FANCA were screened, and the SPIRE2 gene was thought to be associated with fecundity traits. Meanwhile, the functional enrichment of these candidate genes revealed that they were involved in biological processes of mammary gland morphogenesis, uterus development, gastrulation, mesoderm morphogenesis and formation, and blood vessel development, which might undergo natural or artificial selection during reproductive trait formation in goats. Thus, our findings could enrich the genetic basis of reproductive trait selection during goat domestication, which may serve to improve goat breeding practices.Insulators play important roles in genome structure and function in eukaryotes. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. The Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the gypsy retrotransposon. Insulator activity relies on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulator complexes is unclear. Here, we demonstrate that HIPP1 colocalizes with the Su(Hw) insulator complex in polytene chromatin and in stress-induced insulator bodies. We find that the overexpression of either HIPP1 or Su(Hw) or mutation of the HIPP1 crotonase-like domain (CLD) causes defects in cell proliferation by limiting the progression of DNA replication. We also show that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function, while mutation of the HIPP1 CLD does not affect Su(Hw) enhancer blocking. These findings demonstrate a functional relationship between HIPP1 and the Su(Hw) insulator complex and suggest that the CLD, while not involved in enhancer blocking, influences cell cycle progression.Association of the filaggrin (FLG) gene with atopic dermatitis (AD) in Caucasians from Central Russia was studied in the sample of 700 patients and 612 controls. In total ten SNPs of the gene (rs61816761, rs12130219, rs77199844, rs558269137, rs4363385, rs12144049, rs471144, rs6661961, rs10888499, rs3126085), their haplotypes and interlocus interactions were analyzed using logistic regression. The functional effects of the AD risk candidate loci and their proxies (136 SNPs) were evaluated by in silico analysis. All analyzed SNPs were associated with AD two SNPs (rs3126085 and rs12144049) manifested the independent association, nine SNPs were associated within 30 haplotypes, and seven SNPs showed interlocus interaction effects within ten most significant epistatic models. Alleles A rs3126085 and C rs12144049 were associated with a higher risk of AD according to the allelic (ORs being 1.75, pperm = 0.002 and 1.45, pperm = 0.011 respectively), additive (ORs being 1.69, pperm = 0.004 and 1.47, pperm = 0.011 respectively) and dominant (ORs being 1.79, pperm = 0.004 and 1.63, pperm = 0.005 respectively) genetic models. Three haplotypes, GT[rs3126085-rs12144049] (OR = 0.60), GGT[rs61816761-rs3126085-rs12144049] (OR = 0.59), and AWGGT[rs12130219-rs558269137-rs61816761-rs3126085-rs12144049] (OR = 0.63) demonstrated the protective effect (pperm = 0.001). The in silico analysis suggested that the AD risk variants and their proxies apparently produce various effects on 38 genes in various tissue/organs (including 20 genes in the skin). The biological process enrichment analyses suggest that the target AD candidate genes influence the formation of the cornified envelope, keratinization and cornification, and more than twenty other pathways related to skin development, programmed cell death, and regulation of water loss via skin.
The coronavirus disease-2019 (COVID-19) pandemic and national lockdowns took away opportunities for children to be physically active. This study aimed to determine the effect of the COVID-19 lockdown on accelerometer-assessed physical activity (PA) in children in Wales.
Eight hundred participants (8-18 years old), stratified by sex, age, and socio-economic status, wore Axivity AX3 accelerometers for 7 days in February 2021, during the lockdown, and in May 2021, while in school. Raw accelerometer data were processed in R-package GGIR, and cut-point data, average acceleration (AvAcc), intensity gradient, and the acceleration above which the most active X minutes are accumulated (MX) metrics were extracted. Linear mixed models were used to assess the influence of time-point, sex, age, and socioeconomic status (SES) on PA.
During lockdown, moderate-to-vigorous PA was 38.4 ± 24.3 min/day; sedentary time was 849.4 ± 196.6 min/day; mean ± SD. PA levels increased significantly upon return to school (all variabl-recovery intervention.Due to the presence of blood-brain barrier (BBB), various chemotherapy drugs against B-cell lymphoma cannot be effectively transmitted into the brain, leading to poor prognosis of primary central nervous system lymphoma (PCNSL). Exosomes can cross the BBB as a bio- and immune-compatible drug carrier. In this study, we developed a novel drug delivery system, in which the exosomes (Exo) are conjugated with anti-CD22 monoclonal antibody fragments (CD22-F(ab')2) and encapsulate doxorubicin (DOX) to form CD22-F(ab')2-Exo-DOX. We showed that CD22-F(ab')2-Exo-DOX can cross BBB and deliver DOX precisely to tumor cells. The average apoptosis rate of lymphoma cells was 84.60% ± 10.69%. UNC0642 price The tumor-bearing mice treated with CD22-F(ab')2-Exo-DOX have significantly prolonged life expectancy and the enhanced anti-tumor activity. CD22-F(ab')2-Exo-DOX might be ingested by brain microvascular endothelial cells through endocytosis to cross the BBB. Therefore, targeted chemotherapy mediated by CD22-F(ab')2-Exo-DOX is a promising option for the treatment of PCNSL.Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.Mechanical ventilation (MV) is a tool used in critical patient care. However, it can trigger inflammatory and oxidative processes capable of causing or aggravating lung injuries, which is known as ventilator-induced lung injury (VILI). Hesperidin is a flavonoid with antioxidant and anti-inflammatory properties in various diseases. The role of hesperidin in the process triggered by MV is poorly studied. Thus, we hypothesize hesperidin could protect the lung of mice submitted to mechanical ventilation. For that, we evaluated cell viability and reactive oxygen species (ROS) formation in macrophages using different hesperidin concentrations. We observed hesperidin did not reduce cell viability, however; it attenuated the production of intracellular ROS in cells stimulated with lipopolysaccharide (LPS). We further evaluated the effects of hesperidin in vivo in animals submitted to MV. In the bronchoalveolar lavage fluid, there were higher levels of macrophage, lymphocyte and neutrophil counts in animals submitted to MV, indicating an inflammatory process. In the lung tissue, MV induced oxidative damage and increased myeloperoxidase activity, though the antioxidant enzyme activity decreased. MV also induced the production of the inflammatory mediators CCL-2, TNF-α and IL-12. Pretreatment with hesperidin resulted in less recruitment of inflammatory cells to the airways and less oxidative damage. Also, it reduced the formation of CCL-2 and IL-12. Our results show pretreatment with hesperidin can protect the lungs of mice submitted to mechanical ventilation by modulating the inflammatory response and redox imbalance and may act to prevent MV injury.
Total Hip Arthroplasty (THA) leads to excellent clinical and functional results. The Minimally Invasive Anterior Approach (MIAA) theoretically allows rapid recovery and a reduction in the need for rehabilitation, but alterations in muscle and static balance have previously been demonstrated. Kinetic, kinematic and muscular alterations have been shown to persist up to 1year postoperatively but data beyond 1year postoperatively is lacking. Thus, the objective of this study was to compare the data from Quantitative Gait Analysis (QGA) coupled with electromyography (EMG), of patients one year postoperatively with THA through MIAA, compared to an asymptomatic control group.
We hypothesized that QGA and EMG parameters would not normalize beyond one year postoperatively.
Twenty-seven patients were recruited, including 15 subjects (64.6±6.6years) operated on by MIAA, who at 15.9±3.1months postoperatively, along with 12 asymptomatic control subjects (68.9±9.7years), who underwent QGA and maximal isometric musclen one year postoperatively. These results would allow rehabilitation programs to be more specific and would justify a study on the other approaches for THA.
III; non-randomized control trial.
III; non-randomized control trial.
Periostin (Postn) is thought to play a role in the formation of anterior cruciate ligament (ACL) insertion. However, the influence of Postn on the development of ACL insertion requires further understanding. This study aimed to clarify the influence of Postn on the development of fibrocartilage layers of ACL insertion.
We hypothesized that Postn would influence the development of fibrocartilage layers of ACL insertion.
C57BL/6N wild-type (Postn+/+; n=54) and Postn knockout (Postn-/-; n=54) mice were used in this study. Six animals were euthanized at 1 d and 1, 2, 3, 4, 6, 8, 10, and 12 weeks of age in each group. The chondrocyte number, proliferation, apoptosis, safranin O-stained glycosaminoglycan (GAG) area, type II collagen staining area, tidemark length, and insertion width were evaluated.
Chondrocyte proliferation was high up to 2 weeks in Postn+/+, while low at age 1 d; it was, especially lower in Postn-/- than in Postn+/+ at age 1 d and 1 week. Chondrocyte apoptosis was high up to age 8 weeks in Postn+/+ and at 6 weeks in Postn-/-; it was especially higher in Postn-/- than in Postn+/+ at age 1 week.