3Methylglutaconic aciduria throughout providers involving primary carnitine lack

From Stairways
Jump to navigation Jump to search

up. The leaves were punctured using a sterilized needle, inoculated with 5-mm-diameter PDA plugs excised from 7-day-old cultures, and wrapped with parafilm. Nine pieces of healthy leaves inoculated with sterilized PDA plugs were served as controls. Disease symptoms developed on all the C. fructicola-inoculated leaves 5 days after inoculation, and a yellow brown lesion became apparent 16 days later, whereas the control leaves remained asymptomatic. C. fructicola was reisolated from the lesions, but not from the control leaves, fulfilling the Koch's postulates. This fungus is a well-known pathogen and has led to anthracnose on many plant species globally. However, our study represents the first report of C. fructicola causing anthracnose on P. sheareri worldwide and its potential threat should be evaluated.Pepper (Capsicum annuum) and Tomato (Solanum lycopersicum) plants showing virus-like disease symptoms were collected in 2017, 2019, and 2020, in different parts of Slovenia (Supplementary Figure 1). Total RNA was extracted from leaf tissue of individual samples using RNeasy Plant Mini kit (Qiagen) and pooled in four composite samples as follows 2 pepper plants from 2017 (D2017), 5 pepper and 4 tomato plants from 2019 (D2019_P1), 7 tomato plants (D2020_P1), and 2 pepper and 4 tomato plants (D2020_P3) from 2020. The pooled RNA samples were sequenced using Illumina platforms, details of the sequencing experiments are in Supplementary Table 1. Reads were analyzed using CLC Genomics Workbench (v. 20.0, Qiagen) following the pipelines for plant virus discovery (Pecman et al., 2017). Reads and contigs mapping to Ranunculus white mottle ophiovirus (RWMV, GenBank accession no. AY542957 or NC_043389) were detected in all pools. The longest contig (1,255 bp) was obtained from the 2019 composite sample, mapping to the cot al. 2019. New Dis. PF-04965842 cost Rep. 4013. doi10.5197/j.2044-0588.2019.040.013. Okada, R., et al. 2011. J. Gen. Virol. 922664-2673. doi10.1099/vir.0.034686-0. Pecman, A., et al. 2017. Front. Microbiol. 81-10. doi10.3389/fmicb.2017.01998. Saritha, R. K., et al. 2016. VirusDisease 27327-328. doi10.1007/s13337-016-0327-7. Vaira, A. M., et al. 2003. Arch. Virol. 1481037-1050. doi10.1007/s00705-003-0016-x. Vaira, A. M., et al. 1996. Acta Hortic., 43236-43. doi10.17660/ActaHortic.1996.432.3. Vaira, A. M., et al. 1997. Arch. Virol. 1422131-2146. doi10.1007/s007050050231. Vaira, A. M., et al. 2000. Plant Dis. 841046-1046. doi10.1094/PDIS.2000.84.9.1046B.Banana (Musa acuminata) is one of the most popular and widely consumed fruit crops in the world. During late October to early November 2020, a banana finger-tip rot disease was observed in the banana (cultivar 'Brazil', AAA group) orchard of about 12 hectares located in Zhongcun, Zhangmu Town, Fumian District, Yulin City, Guangxi province, China. The disease incidence was about 0.5% at the surveyed field. Infected fingers and their tips were usually normal in the appearances and then turned to brown to black discoloration in the central fruit pulp adjacent to the fingertips (Fig. 1A). In severe infection, diseased fingers showed brown to black discoloration in both the central and the periphery fruit pulp, and along the longitudinal axis throughout the fruit (Fig. 1B-C). The symptomatic banana fingers were surface-disinfected with 1% sodium hypochlorite for 30 sec, 75% ethanol for 30 sec then rinsed three times with sterile distilled water. The flesh tissues were ground in a sterile mortar and soaked in 1 ml d with Parafilm. For each treatment, ten independent replicates were conducted. At 10 days post-inoculation (dpi), the pulp of immature bananas exhibited reddish brown decaying tissue, which symptoms were similar to those observed in the field (Fig. 1D). Moreover, the pulp tissues of ripe bananas showed a dark brown discoloration in the tip at 5 dpi, whereas the controls remained symptomless (Fig. 1E). The same bacterium was re-isolated from diseased tissues and its identification confirmed by 16S rRNA, thus fulfilling the Koch's postulates. This disease was first described in Honduras in Latin America, and then reported in Taiwan province of China, and Iran (Buddenhagen 1968; Lee et al. 2003; Ansari et al. 2019). To our knowledge, this is the first report of banana finger-tip rot caused by B. cepacia in the Guangxi province, China. It is necessary to determine the distribution of B. cepacia and to prevent its spread in Guangxi province of China.Grapes (Vitis vinifera L.) are very popular in China as fresh fruit. Due to its storability, some grape varieties can be kept fresh until winter, increasing the popularity of fruit grapes. However, in 2019, rot symptoms were observed on cv. Crimson in Wuhan, Hubei (30°52'N, 114°31'E), and Chengdu, Sichuan (30°67'N, 104°06'E). Subsequently, from 2019 to 2021, Liangshan (28°33'N, 102°42'E, cv.Crimson), Ya'an (29°40'N, 102°66'E, cv. Red globe), and Nanchong (30°80'N, 106°06'E, cv. Victoria), Sichuan also experienced the same decay symptoms. Initial symptoms of this disease were slightly sunken lesions on the berries 5 to 7 days in storage at 28℃, and then white mycelial growth on the surface of lesions. The growth became bluish-green following the occurrence of abundant sporulation, along with softening and collapsing the whole berry (Fig. 1a). Twenty symptomatic berries from each city were collected (100 samples in total) and twenty isolates were obtained using the single spore isolation technique developed by s (Serra et al., 2007). This study is the first time that P. olsonii was reported as a plant pathogen in China. Since the grapes were collected from grocery stores, details of post-harvest management that could have affected disease presence and progression of rotting were not available.Winter squash (Cucurbita maxima cv. 'Golden Delicious') produced in Oregon's Willamette Valley for edible seed production has experienced significant yield losses due to a soilborne disease. The symptoms associated with this disease problem include root rot, crown rot and vascular discoloration in the stems leading to a severe late season wilt and plant collapse. Through field surveys, Fusarium oxysporum, F. solani, F. culmorum-like fungi, Plectosphaerella cucumerina, and Setophoma terrestris were identified to be associated with diseased tissues, and each produced symptoms of root rot, crown rot or stem discoloration in preliminary pathogenicity trials. In this study, 219 isolates of these species were characterized by molecular identity analyses using BLAST of the ITS and EF1α genomic regions and by pathogenicity testing in outdoor, large-container trials. Molecular identity analyses confirmed the identity of isolates at 99 to 100% similarity to reference isolates in the database. In pathogenicity experiments, F. solani produced the most severe symptoms, followed by F. culmorum-like fungi, F. oxysporum, P. cucumerina, and S. terrestris. Some treatments of mixed species inoculum produced symptoms above what was expected from individual species. In particular, the mixture of F. culmorum-like fungi, F. oxysporum, and P. cucumerina and the mixture of F. culmorum-like fungi, F. solani, and S. terrestris had equally severe symptom ratings than that of F. solani by itself. Results indicate that this soilborne disease is primarily caused by Fusarium solani, but interactions among the complex of F. solani, F. culmorum-like fungi, F. oxysporum, and P. cucumerina, can exacerbate disease severity.Phytophthora nicotianae is the most common pathogen in nurseries and gardens, infecting both woody and herbaceous ornamental plants. Phytophthora aerial blight symptoms such dull water-soaked lesions on shoot tips and leaf petioles, girdling on the main stem, necrosis, and wilting of annual vinca were observed in a commercial greenhouse in Warren Co., Tennessee, USA in May 2016. The objective of this study was to identify the causal agent of Phytophthora aerial blight and develop a fungicide management recommendation for ornamental producers. Attempts to isolate the pathogen from symptomatic leaf tissue were conducted and excised leaf pieces were embedded in the V8 agar medium. Morphological characterization, polymerase chain reaction (PCR), sequencing, and pathogenicity test of the isolate FBG2016_444 were conducted to confirm the pathogen identification. The sequence identity was 100% identical to Phytophthora nicotianae, and a combined phylogenetic tree (internal transcribed spacer [ITS]), the large subuni control. However, 0.078 and 0.156 mL·L-1 of oxathiapiprolin applied at 7 or 14 DBI were the most effective treatments in reducing the disease severity and AUDPC on annual vinca plants. The plant growth parameters such as increase in height and width, total plant weight, and root weight were not influenced by the application of oxathiapiprolin. The finding reported in this study will help ornamental growers with better management of Phytophthora aerial blight of annual vinca.Maize striate mosaic virus (MSMV; genus Mastrevirus), was recently reported in maize plants in Brazil, and also detected by metagenomic analyses in the corn leafhopper, Dalbulus maidis (DeLong & Wolcott). Although these findings suggested that D. maidis is a potential vector, no transmission studies have been performed. Here, we tested the transmission of MSMV by D. maidis from field-collected infected plants and plants infected with MSMV via leafhopper-mediated transmission in the laboratory; all plants were confirmed positive for MSMV by PCR. In each one of three transmission replicates, aviruliferous D. maidis nymphs and adults were confined together on a source plant during a 4-day acquisition access period (AAP), and subsequently transferred to healthy maize seedlings (10 individuals per test plant) in a series of 4-day inoculation access periods (IAPs). We also tested transmission by the corn aphid, Rhopalosiphum maidis (Fitch) and by mechanical inoculation of healthy maize seedlings. Only D. maidis transmitted MSMV, with overall transmission rates of 29.4 and 39.5% using field-collected infected plants, and 18.5% using infected plants in laboratory. D. maidis transmitted MSMV until the third (8-12 days after the AAP) or fourth successive IAP (12-16 days) with gradual loss in transmission efficiency and rate of viruliferous insects over time, suggesting a persistent, but non-propagative mode of transmission. Infected test plants showed mottling symptoms with mild chlorotic streaks and height reduction. This is the first report of transmission of a mastrevirus by D. maidis, facilitating the completion of Koch's postulate for MSMV.Walnuts are an important perennial nut crop widely cultivated in China, which are rich in protein, carbohydrate, renieratene, and other beneficial nutrients. China is the largest producer of walnuts in the world, with the largest planting area and output. At the end of April 2020, several unknown necrotic spots on leaves of walnut trees were observed in a Juglans regia field located in Sancha Town, Enshi, China (30°28'N, 109°64'E). Initially, lesions were black, small, sunken, and turning to yellowish-brown, irregular, well surrounded by brown margins. Severely, leaf spots coalesced and resulted in withered and abscised. In order to identify the pathogen, infected leaves were collected. Sections of leaves were aseptically excised from the margins of necrotic spots following surface sterilization and placed on potato dextrose agar (PDA) at 28℃. After 4 days, fungal isolates were obtained and purified by hyphal tip isolation. The isolates looked morphologically similar, producing colonies that appeared hyphae with dark grey, lobed margins, and aerial mycelium with white to light gray.