A new Noninvasive Exosome Spray Vehicle repairs Center right after Myocardial Infarction

From Stairways
Jump to navigation Jump to search

032 and p = 0.014, CDM and RM, respectively). Due to relatively high p-values, we consider that the impact of GSTP1 rs1695 requires further investigation in a larger sample size.Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.Biocompatible gel microemulsions containing natural origin excipients are promising nanocarrier systems for the safe and effective topical application of hydrophobic drugs, including antifungals. Recently, to improve fluconazole skin permeation, tolerability and therapeutic efficacy, we developed topical biocompatible microemulsions based on cinnamon, oregano or clove essential oil (CIN, ORG or CLV) as the oil phase and sucrose laurate (D1216) or sucrose palmitate (D1616) as surfactants, excipients also possessing intrinsic antifungal activity. selleck inhibitor To follow up this research, this study aimed to improve the adhesiveness of respective fluconazole microemulsions using chitosan (a biopolymer with intrinsic antifungal activity) as gellator and to evaluate the formulation variables' effect (composition and concentration of essential oil, sucrose ester structure) on the gel microemulsions' (MEGELs) properties. All MEGELs were evaluated for drug content, pH, rheological behavior, viscosity, spreadability, in vitro drug release and skin permeation and antifungal activity. The results showed that formulation variables determined distinctive changes in the MEGELs' properties, which were nevertheless in accordance with official requirements for semisolid preparations. The highest flux and release rate values and large diameters of the fungal growth inhibition zone were produced by formulations MEGEL-FZ-D1616-CIN 10%, MEGEL-FZ-D1216-CIN 10% and MEGEL-FZ-D1616-ORG 10%. In conclusion, these MEGELs were demonstrated to be effective platforms for fluconazole topical delivery.In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.CpG oligodeoxynucleotides (CpG ODNs), the artificial versions of unmethylated CpG motifs that were originally discovered in bacterial DNA, are demonstrated not only as potent immunoadjuvants but also as anticancer agents by triggering toll-like receptor 9 (TLR9) activation in immune cells. TLR9 activation triggered by CpG ODN has been shown to activate plasmacytoid dendritic cells (pDCs) and cytotoxic T lymphocytes (CTLs), enhancing T cell-mediated antitumor immunity. However, the extent of antitumor immunity carried by TLR agonists has not been optimized individually or in combinations with cancer vaccines, resulting in a decreased preference for TLR agonists as adjuvants in clinical trials. Although various combination therapies involving CpG ODNs have been applied in clinical trials, none of the CpG ODN-based drugs have been approved by the FDA, owing to the short half-life of CpG ODNs in serum that leads to low activation of natural killer cells (NK cells) and CTLs, along with increases of pro-inflammatory cytokine productions. This review summarized the current innovation on CpG ODNs that are under clinical investigation and explored the future direction for CpG ODN-based nanomedicine as an anticancer monotherapy.UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.A family of monomodified bovine serum albumin (BSA) linked to methotrexate (MTX) through a variety of spacers was prepared. All analogues were found to be prodrugs having low MTX-inhibitory potencies toward dihydrofolate reductase in a cell-free system. The optimal conjugates regenerated their antiproliferative efficacies following entrance into cancerous glioma cell lines and were significantly superior to MTX in an insensitive glioma cell line. A BSA-MTX conjugate linked through a simple ethylene chain spacer, containing a single peptide bond located 8.7 Å distal to the protein back bone, and apart from the covalently linked MTX by about 12 Å, was most effective. The inclusion of an additional disulfide bond in the spacer neither enhanced nor reduced the killing potency of this analogue. Disrupting the native structure of the carrier protein in the conjugates significantly reduced their antiproliferative activity. In conclusion, we have engineered BSA-MTX prodrug analogues which undergo intracellular reactivation and facilitate antiproliferative activities following their entrance into glioma cells.A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.This study aimed to optimize and evaluate self-assembled liquid crystalline nanoparticles (SALCs) prepared from phospholipids and oleic acid for enhancing the absorption of Ω-3s. We explored the structure and optimal formulation of SALCs, which are composed of Ω-3 ethyl ester (Ω-3 EE), phospholipids, and oleic acid, using a ternary diagram and evaluated the improvement in Ω-3 dissolution, permeation, and oral bioavailability. The in vitro dissolution and pharmacokinetics of Ω-3 SALCs were compared with those of Omacor soft capsules (as the reference). The shape of the liquid crystal was determined according to the composition of phospholipids, oleic acids, and Ω-3s and was found to be in cubic, lamellar, and hexagonal forms. The dissolution rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) obtained from Ω-3 SALCs were 1.7 to 2.3-fold higher than those of the Omacor soft capsules. Furthermore, a pharmacokinetic study in male beagle dogs revealed that Ω-3 SALCs increased the oral bioavailability of Ω-3 EE by 2.5-fold for EPA and 3.1-fold for DHA compared with the reference. We found an optimal formulation that spontaneously forms liquid crystal-based nanoparticles, improving the bioavailability of EPA and DHA, not found in the existing literature. Our findings offer insight into the impact of nanoparticle phase on the oral delivery of oil-soluble drugs and provide a novel Ω-3 EE formulation that improves the bioavailability of EPA and DHA.Early diagnosis of pancreatic cancer using current imaging modalities remains challenging. We have developed a new approach to identify tumor lesions ≥ 3 mm in the pancreas by positron emission tomography (PET) with a new intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Generally, in clinical research, a radiometal-antibody complex must be prepared immediately before use at the imaging site. To make 64Cu-NCAB001 ipPET available to daily clinical practices in a sustainable way, the NCAB001-chelator conjugate and 64Cu-NCAB001 must be characterized and stabilized. NCAB001 was manufactured under cGMP conditions. NCAB001 was conjugated with a bifunctional chelator (p-SCN-Bn-PCTA), and the antibody-chelator conjugate (PCTA-NCAB001) was characterized by LC/MS and ELISA. Thereafter, to effectively manufacture 64Cu-NCAB001, we developed a new formulation to stabilize PCTA-NCAB001 and 64Cu-NCAB001. An average of three PCTA chelators were conjugated per molecule of NCAB001.