Assessment involving Ocean Sickness in Naval Staff Incidence and also Operations

From Stairways
Jump to navigation Jump to search

1%) received radiotherapy. Stratified survival analysis showed that only T stage was related with survival outcomes for CEC patients in the surgical group, and the outcomes between laryngectomy and non-laryngectomy patients were similar. It was noteworthy that the 5-year survival rate was similar in CEC patients among the different groups treated with surgery, radiotherapy, chemotherapy, or radiochemotherapy (P = 0.244). Conclusions The CEC patients had similar survival outcomes after curative esophagectomy and radiotherapy, including those with or without total laryngectomy. These findings suggest that radiotherapy could be the initial choice for treatment of Chinese CEC patients. Copyright © 2020, Cancer Biology & Medicine.Objective In patients with head and neck squamous cell carcinoma (HNSCC), cetuximab [a monoclonal antibody targeting epidermal growth factor receptor (EGFR)] has been shown to improve overall survival when combined with radiotherapy in the locally advanced setting or with chemotherapy in first-line recurrent and/or metastatic (R/M) setting, respectively. While biomarkers of resistance to cetuximab have been identified in metastatic colorectal cancer, no biomarkers of efficacy have been identified in HNSCC. Here, we aimed to identify biomarkers of cetuximab sensitivity/resistance in HNSCC. Methods HNSCC patients treated with cetuximab at the Curie Institute, for whom complete clinicopathological data and formalin-fixed paraffin-embedded (FFPE) tumor tissue collected before cetuximab treatment were available, were included. Immunohistochemistry analyses of PTEN and EGFR were performed to assess protein expression levels. PIK3CA and H/N/KRAS mutations were analyzed using high-resolution melting (HRM) and Sanger sequencing. We evaluated the predictive value of these alterations in terms of progression-free survival (PFS). Results Hot spot activating PIK3CA and KRAS/HRAS mutations were associated with poor PFS among HNSCC patients treated with cetuximab in the first-line R/M setting, but not among HNSCC patients treated with cetuximab in combination with radiotherapy. Loss of PTEN protein expression had a negative predictive value among HNSCC patients treated with cetuximab and radiotherapy. High EGFR expression did not predict cetuximab sensitivity in our patient population. Conclusions Hot spot activating PIK3CA and RAS mutations predicted cetuximab resistance among HNSCC patients in the first-line R/M setting, whereas loss of PTEN protein expression predicted resistance to cetuximab when combined to radiotherapy. Copyright © 2020, Cancer Biology & Medicine.Objective This study aimed to develop a new polyethylene glycol (PEG)ylated β-elemene liposome (PEG-Lipo-β-E) and evaluate its characterization, pharmacokinetics, antitumor effects and safety in vitro and in vivo. Methods The liposomes were prepared by ethanol injection and high-pressure micro-jet homogenization. Characterization of the liposomes was conducted, and drug content, entrapment efficiency (EE), in vitro release and stability were studied by ultra-fast liquid chromatography (UFLC) and a liquid surface method. Blood was drawn from rats to establish the pharmacokinetic parameters. The anticancer effect was evaluated in a KU-19-19 bladder cancer xenograft model. Histological analyses were performed to evaluate safety. Results The PEG-Lipo-β-E showed good stability and was characterized as 83.31 ± 0.181 nm in size, 0.279 ± 0.004 in polydispersity index (PDI), -21.4 ± 1.06 mV in zeta potential, 6.65 ± 0.02 in pH, 5.024 ± 0.107 mg/mL in β-elemene (β-E) content, and 95.53 ± 1.712% in average EE. The Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) indicated the formation of PEG-Lipo-β-E. Compared to elemene injection, PEG-Lipo-β-E demonstrated a 1.75-fold decrease in clearance, a 1.62-fold increase in half-life, and a 1.76-fold increase in area under the concentration-time curves (AUCs) from 0 hour to 1.5 hours (P less then 0.05). PEG-Lipo-β-E also showed an enhanced anticancer effect in vivo. Histological analyses showed that there was no evidence of toxicity to the heart, kidney, liver, lung or spleen. Conclusions The present study demonstrates PEG-Lipo-β-E as a new formulation with ease of preparation, high EE, good stability, improved bioavailability and antitumor effects. Copyright © 2020, Cancer Biology & Medicine.Objectives To evaluate the characteristics and work-up of small to intermediate-sized pulmonary nodules in a Chinese dedicated cancer hospital. Methods Patients with pulmonary nodules 4-25 mm in diameter detected via computed tomography (CT) in 2013 were consecutively included. The analysis was restricted to patients with a histological nodule diagnosis or a 2-year follow-up period without nodule growth confirming benign disease. Patient information was collected from hospital records. Results Among the 314 nodules examined in 299 patients, 212 (67.5%) nodules in 206 (68.9%) patients were malignant. Compared to benign nodules, malignant nodules were larger (18.0 mm vs. 12.5 mm, P less then 0.001), more often partly solid (16.0% vs. 4.7%, P less then 0.001) and more often spiculated (72.2% vs. 41.2%, P less then 0.001), with higher density in contrast-enhanced CT (67.0 HU vs. 57.5 HU, P = 0.015). Final diagnosis was based on surgery in 232 out of 314 (73.9%) nodules, 166 of which were identified as malig Biology & Medicine.Objective Upper gastrointestinal (UGI) cancers, predominantly gastric cancer (GC) and esophageal cancer (EC), are malignant tumor types with high morbidity and mortality rates. Accumulating studies have focused on metabolomic profiling of UGI cancers in recent years. In this systematic review, we have provided a collective summary of previous findings on metabolites and metabolomic profiling associated with GC and EC. Methods A systematic search of three databases (Embase, PubMed, and Web of Science) for molecular epidemiologic studies on the metabolomic profiles of GC and EC was conducted. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included articles. Results A total of 52 original studies were included for review. A number of metabolites were differentially distributed between GC and EC cases and non-cases, including those involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and protein and lipid metabolism. Lactic acid, glucose, citrate, and fumaric acid were among the most frequently reported metabolites of cellular respiration while glutamine, glutamate, and valine were among the most commonly reported amino acids. The lipid metabolites identified previously included saturated and unsaturated free fatty acids, aldehydes, and ketones. However, the key findings across studies to date have been inconsistent, potentially due to limited sample sizes and the majority being hospital-based case-control analyses lacking an independent replication group. Conclusions Studies on metabolomics have thus far provided insights into etiological factors and biomarkers for UGI cancers, supporting the potential of applying metabolomic profiling in cancer prevention and management efforts. Copyright © 2020, Cancer Biology & Medicine.Objective Circulating tumor cells (CTCs) play a critical role in cancer metastasis, but their prevalence and significance remain unclear. This study attempted to track the epithelial-mesenchymal transition (EMT) status of CTCs in breast cancer patients and investigate their clinical relevance. Methods In this study, the established negFACS-IFE/M platform was applied to isolate rare CTCs and characterize their EMT status in breast cancer. A total of 89 breast cancer patients were recruited, including stage 0-III (n = 60) and late stage (n = 29) cases. Results Using the negFACS-IFE/M platform, it was found that in human epidermal growth factor receptor 2 (HER2)+ patients, mesenchymal CTCs usually exhibited a high percentage of HER2+ cells. Stage IV breast cancer patients had considerably more CTCs than stage 0-III patients. Among stage 0-III breast cancers, the HER2 subtype included a significantly higher percentage of mesenchymal and biphenotypic (epithelial and mesenchymal) CTCs than the luminal A or B subtypes. Among stage IV patients, CTCs were predominantly epithelial in cases with local recurrence and were more mesenchymal in cases with distant metastasis. By applying a support vector machine (SVM) algorithm, the EMT status of CTCs could distinguish between breast cancer cases with metastasis/local recurrence and those without recurrence. Conclusions The negFACS-IFE/M platform provides a flexible and generally acceptable method for the highly sensitive and specific detection of CTCs and their EMT traits in breast cancer. This study demonstrated that the EMT status of CTCs had high clinical relevance in breast cancer, especially in predicting the distant metastasis or local recurrence of breast cancer. Copyright © 2020, Cancer Biology & Medicine.Objective Neutrophil extracellular traps (NETs) produced by tumor-infiltrating neutrophils (TINs) are associated with poor prognosis in patients with several types of cancer. However, the mechanisms underlying the involvement of NETs in glioma progression remain largely unknown. This study aimed to elucidate the roles of NETs in biological processes that drive the crosstalk between glioma progression and the tumor microenvironment. Methods Neutrophil infiltration and NETs formation were investigated in glioma tissue through immunohistochemistry, and their relationships with clinicopathological features and outcomes were statistically evaluated. mTOR inhibitor The effects of NETs on glioma cell progression were studied in a co-culture system. In vivo and in vitro experiments validated the reactive oxygen species activity and cytokine production of TINs, as well as the ERK signaling pathway activation and the metastasis of gliomas. Results Neutrophil infiltration and NETs formation were induced in high-grade glioma compared with low-grade glioma. NETs induced by TINs were determined to be an oncogenic marker of high-grade gliomas and to be involved in cell proliferation and invasion. NETs overproduction promoted glioma cell proliferation, migration, and invasion. Furthermore, HMGB1 was found to bind to RAGE and activate the NF-κB signaling pathway in vitro. In addition, NETs stimulated the NF-κB signaling pathway, thus promoting IL-8 secretion in glioblastoma. Subsequently, IL-8 recruited neutrophils which in turn mediated NETs formation via the PI3K/AKT/ROS axis in TINs. Conclusions Our results suggest that NETs produced by TINs mediate the crosstalk between glioma progression and the tumor microenvironment by regulating the HMGB1/RAGE/IL-8 axis. Targeting NETs formation or IL-8 secretion may be an effective approach to inhibit glioma progression. Copyright © 2020, Cancer Biology & Medicine.Objective Epithelial cancers often originate from progenitor cells, while the origin of hepatocellular carcinoma (HCC) is still controversial. HCC, one of the deadliest cancers, is closely linked with liver injuries and chronic inflammation, which trigger massive infiltration of bone marrow-derived cells (BMDCs) during liver repair. Methods To address the possible roles of BMDCs in HCC origination, we established a diethylnitrosamine (DEN)-induced HCC model in bone marrow transplanted mice. Immunohistochemistry and frozen tissue immunofluorescence were used to verify DEN-induced HCC in the pathology of the disease. The cellular origin of DEN-induced HCC was further studied by single cell sequencing, single-cell nested PCR, and immunofluorescence-fluorescence in situ hybridization. Results Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs, and not from recipient mice. Furthermore, the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model.