Body mass index craze and variability inside rheumatoid arthritis

From Stairways
Jump to navigation Jump to search

PERCIST measurements were performed for each paired baseline and post-treatment scan. Receiver operating characteristic analysis for the prediction of pCR was performed using logistic regression that included age and tumor size as covariates. SUV and SUL metrics were significantly different between orientation (P .6). Overlapping 95% confidence intervals for the receiver operating characteristic analysis suggested no difference at predicting pCR. Therefore, prone and supine PERCIST in this data set were not statistically different.Magnetic resonance (MR)-derived radiomic features have shown substantial predictive utility in modeling different prognostic factors of glioblastoma and other brain cancers. However, the biological relationship underpinning these predictive models has been largely unstudied, and the generalizability of these models had been called into question. Here, we examine the localized relationship between MR-derived radiomic features and histology-derived "histomic" features using a data set of 16 patients with brain cancer. Tile-based radiomic features were collected on T1, post-contrast T1, FLAIR, and diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC) images acquired before patient death, with analogous histomic features collected for autopsy samples coregistered to the magnetic resonance imaging. Features were collected for each original image, as well as a 3D wavelet decomposition of each image, resulting in 837 features per MR and histology image. Correlative analyses were used to assess the degree of association between radiomic-histomic pairs for each magnetic resonance imaging. The influence of several confounds was also assessed using linear mixed-effect models for the normalized radiomic-histomic distance, testing for main effects of different acquisition field strengths. Results as a whole were largely heterogeneous, but several features showed substantial associations with their histomic analogs, particularly those derived from the FLAIR and postcontrast T1W images. These features with the strongest association typically presented as stable across field strengths as well. These data suggest that a subset of radiomic features can consistently capture texture information on underlying tissue histology.We aimed to compare diagnostic performance in discriminating malignant and benign breast lesions between two intravoxel incoherent motion (IVIM) analysis methods for diffusion-weighted magnetic resonance imaging (DW-MRI) data and between DW- and dynamic contrast-enhanced (DCE)-MRI, and to determine if combining DW- and DCE-MRI further improves diagnostic accuracy. DW-MRI with 12 b-values and DCE-MRI were performed on 26 patients with 28 suspicious breast lesions before biopsies. The traditional biexponential fitting and a 3-b-value method were used for independent IVIM analysis of the DW-MRI data. Simulations were performed to evaluate errors in IVIM parameter estimations by the two methods across a range of signal-to-noise ratio (SNR). Pharmacokinetic modeling of DCE-MRI data was performed. Conventional radiological MRI reading yielded 86% sensitivity and 21% specificity in breast cancer diagnosis. At the same sensitivity, specificity of individual DCE- and DW-MRI markers improved to 36%-57% and that of combined DCE- or combined DW-MRI markers to 57%-71%, with DCE-MRI markers showing better diagnostic performance. The combination of DCE- and DW-MRI markers further improved specificity to 86%-93% and the improvements in diagnostic accuracy were statistically significant (P less then .05) when compared with standard clinical MRI reading and most individual markers. At low breast DW-MRI SNR values ( less then 50), like those typically seen in clinical studies, the 3-b-value approach for IVIM analysis generates markers with smaller errors and with comparable or better diagnostic performances compared with biexponential fitting. This suggests that the 3-b-value method could be an optimal IVIM-MRI method to be combined with DCE-MRI for improved diagnostic accuracy.Arterial spin-labeled magnetic resonance imaging can provide quantitative perfusion measurements in the brain and can be potentially used to evaluate therapy response assessment in glioblastoma (GBM). The reliability and reproducibility of this method to measure noncontrast perfusion in GBM, however, are lacking. We evaluated the intrasession reliability of brain and tumor perfusion in both healthy volunteers and patients with GBM at 3 T using pseudocontinuous labeling (pCASL) and 3D turbo spin echo (TSE) using Cartesian acquisition with spiral profile reordering (CASPR). Two healthy volunteers at a single time point and 6 newly diagnosed patients with GBM at multiple time points (before, during, and after chemoradiation) underwent scanning (total, 14 sessions). Compared with 3D GraSE, 3D TSE-CASPR generated cerebral blood flow maps with better tumor-to-normal background tissue contrast and reduced image distortions. The intraclass correlation coefficient between the 2 runs of 3D pCASL with TSE-CASPR was consistently high (≥0.90) across all normal-appearing gray matter (NAGM) regions of interest (ROIs), and was particularly high in tumors (0.98 with 95% confidence interval [CI] 0.97-0.99). read more The within-subject coefficients of variation were relatively low in all normal-appearing gray matter regions of interest (3.40%-7.12%), and in tumors (4.91%). Noncontrast perfusion measured using 3D pCASL with TSE-CASPR provided robust cerebral blood flow maps in both healthy volunteers and patients with GBM with high intrasession repeatability at 3 T. This approach can be an appropriate noncontrast and noninvasive quantitative perfusion imaging method for longitudinal assessment of therapy response and management of patients with GBM.We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP) and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases. Twenty-two patients with HN cancer, with 38 lymph nodes, underwent pretreatment standard MRI, including DCE-MRI, on a 3-Tesla scanner. CFM simulation was performed with the finite element method in COMSOL Multiphysics software. The model consisted of a partial differential equation (PDE) module to generate 3D parametric IFP and IFV maps, using the Darcy equation and K t r a n s values (min-1, estimated from the extended Tofts model) to reflect fluid influx into tissue from the capillary microvasculature. The Spearman correlation (ρ) was calculated between total tumor volumes and CFM estimates of mean tumor IFP and IFV. CFM-estimated tumor IFP and IFV mean ± standard deviation for the neck nodal metastases were 1.