Carry out creatures dream

From Stairways
Jump to navigation Jump to search

The aim of this study was to determine the effect of different drying methods convective (at 50, 60, 70 °C), vacuum-microwave (at 120, 240, 360, 480 W and 360 W with reduction to 120 W) and hybrid (convective pre-drying at 50, 60, 70 °C followed by vacuum-microwave drying at 120 W) on the quality parameters of novel red-fleshed apple fruit snacks (RFAs), such as phenolics, on-line antioxidant capacity, water activity and color. Drying kinetics, including a temperature profile of dried material, and modified Page model were determined. Freeze-drying was used as a control method. The highest content of bioactive compounds in the samples was retained following freeze-drying, then hybrid, vacuum-microwave and finally convection drying. The antioxidant capacity measured by on-line 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), identified anthocyanins, flavan-3-ols and phenolic acid as the main compounds responsible for this activity. Unfavorable changes in color, formation of hydroxymethylfurfural (HMF) and degradation of polyphenolics were noted along with increasing drying temperature and magnetron power. The red-fleshed apple snacks are a promising high-quality dehydrated food product belonging to functional foods category.The PLATZ (plant AT-rich protein and zinc-binding protein) transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins. PLATZ has essential roles in seed endosperm development, as well as promoting cell proliferation duration in the earlier stages of the crops. In the present study, 62 TaPLATZ genes were identified from the wheat genome, and they were unequally distributed on 15 chromosomes. According to the phylogenetic analysis, 62 TaPLATZ genes were classified into six groups, including two groups that were unique in wheat. Members in the same groups shared similar exon-intron structures. The polyploidization, together with genome duplication of wheat, plays a crucial role in the expansion of the TaPLATZs family. Transcriptome data indicated a distinct divergence expression pattern of TaPLATZ genes that could be clustered into four modules. selleck chemical The TaPLATZs in Module b possessed a seed-specific expression pattern and displayed obvious high expression in the earlier development stage of seeds. Subcellular localization data of TaPLATZs suggesting that they likely perform a function as a conventional transcription factor. This study provides insight into understanding the structure divergence, evolutionary features, expression profiles, and potential function of PLATZ in wheat.The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a "break test" depends on the tester's force rise and the patient's ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers' force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient's reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given.The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.Dactylorhiza hatagirea (Orchidaceae) is a perennial herb inhabiting sub-alpine to alpine regions, ranging at elevations between 2500 and 5000 m.a.s.l. With palmately lobed rhizome and lanceolate leaves having a sheathing leaf base, it bears pink flowers with purple-colored notches and a curved spur. It finds wide use in ayurveda, siddha, unani, and folk medicine in curing disorders of the circulatory, respiratory, nervous, digestive, skeletal, and reproductive systems, besides boosting the immune system to fight infectious diseases. Secondary metabolites such as dactylorhins A-E, dactyloses A-B, and others exhibit a wide spectrum of pharmacological activities (antioxidant, antimicrobial, antiseptic, anticancer, and immune enhancing activities). Its use as a dietary supplement was found to be beneficial in increasing testosterone levels, resulting in improved sexual desire and arousal. Incessant overexploitation of this medicinally important herb has resulted in the dwindling of its populations in the wild, which has resulted in its classification as a critically endangered plant species. Efforts involving mass reproduction through in vitro (through tissue culture) and in vivo (by vegetative propagation) means are currently being made to maintain the germplasm of this critically endangered orchid. Holding immense significance in clinical research and drug discovery, work on the genomic front (transcriptomics) has recently been carried out to discover the wealth of unexplored genetic information for this perennial herb. The present study is aimed at reviewing different aspects of the orchid to present collective (summarized) information on this medicinally important herb in the present, particularly its botany, ethnobotanical uses, phytochemistry, and pharmacognosy, along with the strategies that need to be adopted to prevent its overexploitation in natural habitats.