Cell wall breadth and also structure are based on photosynthesis in Antarctic mosses

From Stairways
Jump to navigation Jump to search

Optimizing traffic flow is essential for easing congestion. selleck chemical However, even when globally optimal, coordinated, and individualized routes are provided, users may choose alternative routes which offer lower individual costs. By analyzing the impact of selfish route choices on performance using the cavity method, we find that a small ratio of selfish route choices improves the global performance of uncoordinated transportation networks but degrades the efficiency of optimized systems. Remarkably, compliant users always gain in the former and selfish users may gain in the latter, under some parameter conditions. The theoretical results are in good agreement with large-scale simulations. Iterative route switching by a small fraction of selfish users leads to Nash equilibria close to the globally optimal routing solution. Our theoretical framework also generalizes the use of the cavity method, originally developed for the study of equilibrium states, to analyze iterative game-theoretical problems. These results shed light on the feasibility of easing congestion by route coordination when not all vehicles follow the coordinated routes.The groundbreaking investigation by Deutsch [Phys. Rev. A 43, 2046 (1991)PLRAAN1050-294710.1103/PhysRevA.43.2046] of how a closed many-body quantum system approaches thermal equilibrium is revisited. It is shown how to carry out some important steps that were missing in that paper. Moreover, the class of admitted systems is extended considerably.Epithelial cell tissues have a slow relaxation dynamics resembling that of supercooled liquids. Yet, they also have distinguishing features. These include an extended short-time subdiffusive transient, as observed in some experiments and recent studies of model systems, and a sub-Arrhenius dependence of the relaxation time on temperature, as reported in numerical studies. Here we demonstrate that the anomalous glassy dynamics of epithelial tissues originates from the emergence of a fractal-like energy landscape, particles becoming virtually free to diffuse in specific phase space directions up to a small distance. Furthermore, we clarify that the stiffness of the cells tunes this anomalous behavior, tissues of stiff cells having conventional glassy relaxation dynamics.The framework of transition state theory (TST) provides a powerful way for analyzing the dynamics of physical and chemical reactions. While TST has already been successfully used to obtain reaction rates for systems with a single time-dependent saddle point, multiple driven saddles have proven challenging because of their fractal-like phase space structure. This paper presents the construction of an approximately recrossing-free dividing surface based on the normally hyperbolic invariant manifold in a time-dependent two-saddle model system. Based on this, multiple methods for obtaining instantaneous (time-resolved) decay rates of the underlying activated complex are presented and their results discussed.The dynamics of networks on Heider's balance theory moves toward reducing the tension by constantly reevaluating the interactions to achieve a state of balance. Conflict of interest, however, is inherent in most complex systems; frequently, there are multiple ideals or states of balance, and moving towards one could work against another. In this paper, by introducing the competitive balance theory, we study the evolution of balance in the presence of conflicts of interest. In our model, the assumption is that different states of balance compete in the evolution process to dominate the system. We ask whether, through these interactions, different states of balance compete to prevail their own ideals or a set of coexisting ideals in a balanced condition is a possible outcome. The results show that although there is a symmetry in the type of balance the system either evolves towards a symmetry breaking, where one of the states of balance dominates the system, or, less frequently, the competing states of balance coexist in a jammed state.Understanding the global dynamical behavior of a network of coupled oscillators has been a topic of immense research in many fields of science and engineering. Various factors govern the resulting dynamical behavior of such networks, including the number of oscillators and their coupling schemes. Although these factors are seldom significant in large populations, a small change in them can drastically affect the global behavior in small populations. In this paper, we perform an experimental investigation on the effect of these factors on the coupled behavior of a minimal network of candle-flame oscillators. We observe that strongly coupled oscillators exhibit the global behavior of in-phase synchrony and amplitude death, irrespective of the number and the topology of oscillators. However, when they are weakly coupled, their global behavior exhibits the intermittent occurrence of multiple stable states in time. We report the experimental discovery of partial amplitude death in a network of candle-flame oscillators, in addition to the observation of other dynamical states including clustering, chimera, and weak chimera. We also show that closed-loop networks tend to hold global synchronization for longer duration as compared to open-loop networks.The expressive power of artificial neural networks crucially depends on the nonlinearity of their activation functions. Though a wide variety of nonlinear activation functions have been proposed for use in artificial neural networks, a detailed understanding of their role in determining the expressive power of a network has not emerged. Here, we study how activation functions affect the storage capacity of treelike two-layer networks. We relate the boundedness or divergence of the capacity in the infinite-width limit to the smoothness of the activation function, elucidating the relationship between previously studied special cases. Our results show that nonlinearity can both increase capacity and decrease the robustness of classification, and provide simple estimates for the capacity of networks with several commonly used activation functions. Furthermore, they generate a hypothesis for the functional benefit of dendritic spikes in branched neurons.