Cellular resistant reply towards EpsteinBarr computer virus lessens through ocrelizumab treatment method

From Stairways
Jump to navigation Jump to search

Strain data of structural health monitoring is a prospective to be made full use of, because it reflects the stress peak and fatigue, especially sensitive to local stress redistribution, which is the probably damage in the vicinity of the sensor. For decoupling structural damage and masking effects caused by operational conditions to eliminate the adverse impacts on strain-based damage detection, small time-scale structural events, i.e., the short-term dynamic strain responses, are analyzed in this paper by employing unsupervised modeling. A two-step approach to successively processing the raw strain monitoring data in the sliding time window is presented, consisting of the wavelet-based initial feature extraction step and the decoupling step to draw damage indicators. The principal component analysis and a low-rank property-based subspace projection method are adopted as two alternative decoupling methodologies. The approach's feasibility and robustness are substantiated by analyzing the strain monitoring data from a customized truss experiment to successfully remove the masking effects of operating loads and identify local damages even concerning accommodating situations of missing data and limited measuring points. This work also sheds light on the merit of a low-rank property to separate structural damages from masking effects by comparing the performances of the two optional decoupling methods of the distinct rationales.Synthetic aperture radar (SAR) tomography (TomoSAR) can obtain 3D imaging models of observed urban areas and can also discriminate different scatters in an azimuth-range pixel unit. Recently, compressive sensing (CS) has been applied to TomoSAR imaging with the use of very-high-resolution (VHR) SAR images delivered by modern SAR systems, such as TerraSAR-X and TanDEM-X. Compared with the traditional Fourier transform and spectrum estimation methods, using sparse information for TomoSAR imaging can obtain super-resolution power and robustness and is only minorly impacted by the sidelobe effect. However, due to the tight control of SAR satellite orbit, the number of acquisitions is usually too low to form a synthetic aperture in the elevation direction, and the baseline distribution of acquisitions is also uneven. In addition, artificial outliers may easily be generated in later TomoSAR processing, leading to a poor mapping product. Focusing on these problems, by synthesizing the opinions of various experts and scholarly works, this paper briefly reviews the research status of sparse TomoSAR imaging. Then, a joint sparse imaging algorithm, based on the building points of interest (POIs) and maximum likelihood estimation, is proposed to reduce the number of acquisitions required and reject the scatterer outliers. Moreover, we adopted the proposed novel workflow in the TerraSAR-X datasets in staring spotlight (ST) work mode. The experiments on simulation data and TerraSAR-X data stacks not only indicated the effectiveness of the proposed approach, but also proved the great potential of producing a high-precision dense point cloud from staring spotlight (ST) data.Sensor data streams often represent signals/trajectories which are twice differentiable (e.g., to give a continuous velocity and acceleration), and this property must be reflected in their segmentation. An adaptive streaming algorithm for this problem is presented. It is based on the greedy look-ahead strategy and is built on the concept of a cubic splinelet. A characteristic feature of the proposed algorithm is the real-time simultaneous segmentation, smoothing, and compression of data streams. The segmentation quality is measured in terms of the signal approximation accuracy and the corresponding compression ratio. The numerical results show the relatively high compression ratios (from 135 to 208, i.e., compressed stream sizes up to 208 times smaller) combined with the approximation errors comparable to those obtained from the state-of-the-art global reference algorithm. The proposed algorithm can be applied to various domains, including online compression and/or smoothing of data streams coming from sensors, real-time IoT analytics, and embedded time-series databases.Aiming at highly dynamic locomotion and impact mitigation, this paper proposes the design and implementation of a symmetric legged robot. Based on the analysis of the three-leg topology in terms of force sensitivity, force production, and impact mitigation, the symmetric leg was designed and equipped with a high torque density actuator, which was assembled by a custom motor and two-stage planetary. Under the kinematic and dynamic constraints of the robot system, a nonlinear optimization for high jumping and impact mitigation is proposed with consideration of the peak impact force at landing. Finally, experiments revealed that the robot achieved a jump height of 1.8 m with a robust landing, and the height was equal to approximately three times the leg length.Cognitive radio technology enables spectrum sensing (SS), which allows the secondary user (SU) to access vacant frequency bands in the periods when the primary user (PU) is not active. Due to its minute implementation complexity, the SS approach based on energy detection (ED) of the PU signal has been analyzed in this paper. Analyses were performed for detecting PU signals by the SU in communication systems exploiting multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transmission technology. To perform the analyses, a new algorithm for simulating the ED process based on a square-law combining (SLC) technique was developed. The main contribution of the proposed algorithm is enabling comprehensive simulation analyses of ED performance based on the SLC method for versatile combinations of operating parameter characteristics for different working environments of MIMO-OFDM systems. The influence of a false alarm on the detection probability of PU signals impacted by operating parameters such as the signal-to-noise ratios, the number of samples, the PU transmit powers, the modulation types and the number of the PU transmit and SU receive branches of the MIMO-OFDM systems have been analyzed in the paper. Simulation analyses are performed by running the proposed algorithm, which enables precise selection of and variation in the operating parameters, the level of noise uncertainty and the detection threshold in different simulation scenarios. The presented analysis of the obtained simulation results indicates how the considered operating parameters impact the ED efficiency of symmetric and asymmetric MIMO-OFDM systems.Structural health monitoring (SHM) is a challenge for many industries. Over the last decade, novel strain monitoring methods using optical fibers have been implemented for SHM in aerospace, energy storage, marine, and civil engineering structures. However, the practical attachment of optical fibers (OFs) to the component is still problematic. While monitoring, the amount of substrate strain lost by the OF attachment is often unclear, and difficult to predict under long-term loads. This investigation clarifies how different attachment methods perform under time-dependent loading. Optical fibers are attached on metal, thermoset composite, and thermoplastic substrates for distributed strain sensing. Strains along distributed optical fiber sensors (DOFS) are measured by optical backscatter reflectometry (OBR) and compared to contact extensometer strains under tensile creep loading. The quality of the bondline and its influence on the strain transfer is analyzed. Residual strains and strain fluctuations along the sensor fiber are correlated to the fiber attachment method. Results show that a machine-controlled attachment process (such as in situ 3-D printing) holds great promise for the future as it achieves a highly uniform bondline and provides accurate strain measurements.The Internet of Things (IoT) leads the era of interconnection, where numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, wireless communication technologies have to overcome available spectrum shortage and complex fading channels. The transform domain communication system (TDCS) is a cognitive anti-interference communication system with a low probability of detection and dynamic spectrum sensing and accessing. However, the non-continuous and asymmetric spectrum brings new challenges to the traditional TDCS block-type pilot, which uses a series of discrete symbols in the time domain as pilots. Low efficiency and poor adaptability in fast-varying channels are the main drawbacks for the block-type pilot in TDCS. In this study, a frequency domain non-uniform pilot design method was proposed with intersecting, skewing, and edging of three typical non-uniform pilots. Some numerical examples are also presented with multipath model COST207RAx4 to verify the proposed methods in the bit error ratio and the mean square error. Compared with traditional block-type pilot, the proposed method can adapt to the fast-varying channels, as well as the non-continuous and asymmetric spectrum conditions with much higher efficiency.UAV equipped three-dimensional (3D) wireless networks can provide a solution for the requirements of 5G communications, such as enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC). Especially, the introduction of an unmanned aerial vehicle (UAV) as a relay node can improve the connectivity, extend the terrestrial base station (BS) coverage and enhance the throughput by taking advantage of a strong air-to-ground line of sight (LOS) channel. In this paper, we consider the deployment and resource allocation of UAV relay network (URN) to maximize the throughput of user equipment (UE) within a cell, while guaranteeing a reliable transmission to UE outside the coverage of BS. To this end, we formulate joint UAV deployment and resource allocation problems, whose analytical solutions can be hardly obtained, in general. We propose a fast and practical algorithm to provide the optimal solution for the number of transmit time slots and the UAV relay location in a sequential manner. The transmit power at BS and UAV is determined in advance based on the availability of channel state information (CSI). Simulation results demonstrate that the proposed algorithms can significantly reduce the computational effort and complexity to determine the optimal UAV location and transmit time slots over an exhaustive search.Active suspension control strategies are a top priority in active suspension system. The current research on active suspension control strategies is mostly focused on two-axle vehicles, and there is less research investigating multi-axle vehicles. Additionally, their effective implementation is dependent on accurate mathematical models, and most of them adopt force feedback control, which is vulnerable to external interference. To solve these problems, this paper proposes an active suspension control strategy based on Inertial Measurement Unit. The multi-axle emergency rescue vehicle is made to be equivalent to a 3-degrees-of-freedom parallel mechanism by using the method of grouping and interconnecting the suspension units of the whole vehicle. PIN1 inhibitor API-1 DNA activator The attitude change of the vehicle body was transformed into the servo actuator's displacement by solving the inverse solution of the parallel mechanism position and the action of the servo actuator was driven in reverse according to the displacement obtained. In this way, the vehicle body attitude can be compensated, and the ride comfort and the handling stability of the vehicle can be improved.