Characterizing the actual functions involving bots upon Facebook through the COVID19 infodemic

From Stairways
Jump to navigation Jump to search

The other three SRSs in the oskar 3' UTR are also required for posterior localization, including two located distant from any known transport signal. Staufen, thus, plays multiple roles in localization of oskar mRNA.Flaviviruses include a great diversity of mosquito-borne arboviruses with epidemic potential and high global disease burden. Several flaviviruses are circulating in southern Africa affecting humans and livestock, among them West Nile virus (WNV) and Wesselsbron virus. Despite their high relevance, no arbovirus surveillance study has been conducted for more than 35 years in Namibia. In this study we assessed the diversity of flaviviruses circulating in mosquitoes in the densely populated, semi-tropical Zambezi region of north-eastern Namibia. In total, 10,206 mosquitoes were sampled in Bwabwata and Mudumu national parks and Mashi and Wuparo conservancies and screened for flavivirus infections. A high infection rate with insect-specific flaviviruses was found with 241 strains of two previously known and seven putative novel insect-specific flaviviruses. In addition, we identified ten strains of WNV in the main vector Cx. univittatus sampled in the Mashi conservancy. Surprisingly, the strains fell into two different clades of lineage 2, 2b and 2d. Further, three strains of Bagaza Virus (BAGV) were found in Cx. univittatus mosquitoes originating from Mudumu national park. Assessment of BAGV growth in different cell lines showed high replication rates in mosquito and duck cells and about 100,000fold lower replication in human, primate and rodent cells. We demonstrate a wide genetic diversity of flaviviruses is circulating in mosquitoes in the Zambezi region. Importantly, WNV and BAGV can cause outbreaks including severe disease and mortality in humans and birds, respectively. Future studies should focus on WNV and BAGV geographic distribution, as well as on their potential health impacts in and the associated social and economic implications for southern Africa.
Echinococcosis (canine Echinococcus disease) is a neglected tropical disease that causes serious public harm. BMS-232632 Dogs, as a terminal host of Echinococcus spp., are a key part of the Echinococcus epidemic. Echinococcosis spreads easily in humans and animals in some areas of China and it is therefore necessary to fully understand the prevalence of Echinococcus spp. in dogs.
PubMed, ScienceDirect, Chongqing VIP, China National Knowledge Infrastructure (CNKI), and WanFang databases were searched for relevant articles published in the past 10 years. A final total of 108 studies were included. The overall prevalence of Echinococcus spp. in dogs in China was 7.3%, with the highest point estimate found in sampling year 2015 (8.2%) and publication year 2015 (16.5%). Northwestern China (7.9%) had the highest infection rate in China. Qinghai Province (13.5%) showed the highest prevalence among the 11 provinces we included. We also found that geographical and climatic factors are related to the incidence of canine echinng the welfare of stray dogs may play an important role in reducing canine Echinococcus infections.The electroencephalogram (EEG) is a major tool for non-invasively studying brain function and dysfunction. Comparing experimentally recorded EEGs with neural network models is important to better interpret EEGs in terms of neural mechanisms. Most current neural network models use networks of simple point neurons. They capture important properties of cortical dynamics, and are numerically or analytically tractable. However, point neurons cannot generate an EEG, as EEG generation requires spatially separated transmembrane currents. Here, we explored how to compute an accurate approximation of a rodent's EEG with quantities defined in point-neuron network models. We constructed different approximations (or proxies) of the EEG signal that can be computed from networks of leaky integrate-and-fire (LIF) point neurons, such as firing rates, membrane potentials, and combinations of synaptic currents. We then evaluated how well each proxy reconstructed a ground-truth EEG obtained when the synaptic currents of the LIF tween computational models and experimental EEG recordings.The recently introduced power spectrum of the refractive index fluctuations of the natural oceanic water turbulence is applied to an underwater communication system in the presence of adaptive optics corrections. link2 The effects of the average temperature (0-30°C), the average salinity (0-40 ppt), the temperature-salinity gradient ratio (0-400°C/ppt), and the wavelength of the source (400-700 nm) on such a system are considered for the first time, to the best of our knowledge. It is revealed that even in the presence of adaptive optics the communication system's operation is severely affected by the regional and seasonal averages and fluctuations in the water's refractive index.Registration of 3D lidar point clouds with optical images is critical in the combination of multisource data. Geometric misalignment originally exists in the pose data between lidar point clouds and optical images. To improve the accuracy of the initial pose and the applicability of the integration of 3D points and image data, we develop a simple but efficient registration method. We first extract point features from lidar point clouds and images point features are extracted from single-frame lidar and point features are extracted from images using a classical Canny operator. The cost map is subsequently built based on Canny image edge detection. The optimization direction is guided by the cost map, where low cost represents the desired direction, and loss function is also considered to improve the robustness of the proposed method. Experiments show positive results.Phase-space analysis has been widely used in the past for the study of optical resonant systems. While it is usually employed to analyze the far-field behavior of resonant systems, we focus here on its applicability to coupling problems. By looking at the phase-space description of both the resonant mode and the exciting source, it is possible to understand the coupling mechanisms as well as to gain insights and approximate the coupling behavior with reduced computational effort. In this work, we develop the framework for this idea and apply it to a system of an asymmetric dielectric resonator coupled to a waveguide.The recently proposed omnidirectional depth segmentation method (ODSM) has advantages over traditional depth segmentation in terms of robustness and computational costs. link3 However, this method uses at least six fringe patterns and changes their sequences multiple times to perform depth segmentation, which limits its segmentation speed and increases computational complexity. This paper proposes a fast computational depth segmentation (FCDS) method in which only five patterns are used for object segmentation at different depths into isolated regions without the requirement of pattern sequence changing. Phase singularity points are fully utilized due to their significance as depth segmentation markers to extract segmenting lines used for depth determination. Meanwhile, a modified Fourier transform algorithm (MFTA) is introduced to calculate the wrapped phase sequences, which uses two groups of orthogonal phase-shifting fringe patterns and a DC component pattern (five in total). The segmenting lines along orthogonal directions can be extracted with the FCDS method without changing the fringe sequences, which not only solves the problem of phase insensitivity but reduces the calculation costs. Besides, the problem of mis-segmentation is solved with an optimization algorithm for depth segmenting lines and successfully segments objects with abrupt depth changes. The simulation results demonstrate the effectiveness and precision of the proposed method. The experimental results prove the success of the proposed method for segmenting objects of similar color with a segmentation speed that is up to a 120% increase relative to previous methods.Graphene is now a crucial component of many device designs in electronics and optics. Just like the noble metals, this single layer of carbon atoms in a honeycomb lattice can support surface plasmons, which are central to several sensing technologies in the mid-infrared regime. As with classical metal plasmons, periodic corrugations in the graphene sheet itself can be used to launch these surface waves; however, as graphene plasmons are tightly confined, the role of unwanted surface roughness, even at a nanometer scale, cannot be ignored. In this work, we revisit our previous numerical experiments on metal plasmons launched by vanishingly small grating structures, with the addition of graphene to the structure. These simulations are conducted with a recently devised, rapid, and robust high-order spectral scheme of the authors, and with it we carefully demonstrate how the plasmonic response of a perfectly flat sheet of graphene can be significantly altered with even a tiny corrugation (on the order of merely 5 nm). With these results, we demonstrate the primary importance of fabrication techniques that produce interfaces whose deviations from flat are on the order of angstroms.Scattering by a three-dimensional object composed of a chiral medium (the interior medium) and immersed in a simple Lorentz-nonreciprocal medium with magnetoelectric gyrotropy (the exterior medium) was treated using the extended boundary condition method (EBCM). The exterior medium is quantified by εre, μre, and Γ, whereas the interior medium is quantified by εri, μri, and β. When irradiated by a plane wave, the differential scattering efficiency does not depend on the polarization state of the incident plane wave if the exterior medium is impedance-matched with the interior medium, regardless of the shape of the object, Γ, and β. Zero backscattering is possible if, in addition to impedance-matching condition, the object is rotationally symmetric about the propagation direction, and Γ is parallel to the propagation direction. Numerical results confirm these remarks for scattering by spheroids. On fixing εri, μri, εre, and μre, the effects of Γ and β on the total scattering efficiency were examined for a sphere. The total scattering efficiency does not depend on the polarization state of the incident plane wave, even when the exterior medium is not impedance-matched with the interior medium, and despite the presence of Γ and β. The total scattering efficiency when Γ is coparallel to the propagation direction can be either equal to, larger than, or smaller than when Γ is antiparallel or perpendicular to the propagation direction, depending on β and the electrical size of the sphere. It is found that parallel propagation of the incident plane wave with respect to Γ has a stronger influence than perpendicular propagation, regardless of β and the electrical size of the sphere. The effect of increasing/decreasing the magnitude of Γ can be envisioned only when its direction is parallel to the propagation direction.The diffraction grating is a classic and important optical element, and its design usually traverses the whole parameter space to search for an optimal solution, which is time consuming and inefficient. In order to specify the optimization direction of the grating to obtain clearer physical images and to improve the design efficiency, a new blazing model based on the total internal reflection (TIR) is proposed to analyze the diffraction behavior of the grating from a geometry perspective. The optical tunnel along the ridge direction can be used to understand and quantify the blaze of the grating. This TIR blazing model is demonstrated via three types of surface-relief grating with simple formulas, resulting in the solution space decreasing significantly. By utilization of the estimated upper limit of the diffraction efficiency and the range of the depth and slanted angle generated by the TIR blazing model, how the grating delivers the majority of the light energy to a required diffraction order is revealed. Binary and slanted gratings with >0.