Compare effect of emotional wording in cultural range with basic sociable stimulus

From Stairways
Jump to navigation Jump to search

Hydrogen peroxide (H2O2) is an important signaling molecule and plays key roles in multiple plant physiological processes. The rapid and direct monitoring of H2O2 could improve our understanding of its regulatory mechanisms in plants. In this study, we developed a paper-based analytical device consisting of a disposable nano-gold modified indium tin oxide working electrode to provide a platform for the rapid and direct detection of H2O2. The total analytical time was dramatically shortened to be approximate 3 min due to the avoidance of the time-consuming and complex treatment of plant samples. In addition, the amount of plant samples required was less than 3 mg in our approach. We used this system to monitor the concentrations of H2O2 in tomato leaves infected by Botrytiscinerea within 24 h. Our results showed that the concentration of H2O2 in tomato leaves was increased in the initial phase, peaked at 1.5 μmol gFW-1 at 6 h, and then decreased. The production trend of H2O2 in tomato leaves inoculated with Botrytiscinerea detected with our approach is similar to the 3,3-diaminobenzidine staining method. Taken together, our study offers a rapid and direct approach for the detection of H2O2, which will not only pave the way for the further investigation of the regulation mechanisms of H2O2 in plants, but also promote the development of precision agriculture technology.Repetition suppression (RS), i.e., the reduction of neuronal activity upon repetition of an external stimulus, can be demonstrated in the motor system using transcranial magnetic stimulation (TMS). We evaluated the RS in relation to the neuroplastic changes induced by paired associative stimulation (PAS). An RS paradigm, consisting of 20 trains of four identical suprathreshold TMS pulses 1 s apart, was assessed for motor-evoked potentials (MEPs) in 16 healthy subjects, before and following (at 0, 10, and 20 min) a common PAS protocol. For analysis, we divided RS into two components (1) the ratio of the second MEP amplitude to the first one in RS trains, i.e., the "dynamic" component, and (2) the mean of the second to fourth MEP amplitudes, i.e., the "stable" component. Following PAS, five subjects showed change in the dynamic RS component. However, nearly all the individuals (n = 14) exhibited change in the stable component (p less then 0.05). The stable component was similar between subjects showing increased MEPs and those showing decreased MEPs at this level (p = 0.254). The results suggest the tendency of the brain towards a stable state, probably free from the ongoing dynamics, following PAS.Deformation instabilities, such as microbuckling or lamellar fragmentation due to slip localization, play a very important role in the deformation of semicrystalline polymers, although it still not well explored. find more Such instabilities often appear necessary to modify the deformation path and facilitate strain accommodation in an energy-minimizing manner. In this work, microbuckling instability was investigated using partially oriented, injection-molded (IM) samples of high-density polyethylene, deformed by a plane-strain compression. Deformed samples were probed by SEM, X-ray (small- and wide-angle X-ray scattering SAXS, WAXS), and differential scanning calorimetry (DSC). It was found that microbuckling instability, followed quickly by the formation of lamellar kinks, occurred in high-density polyethylene (HDPE) at a true strain of about e = 0.3-0.4, mainly in those lamellar stacks which were initially oriented parallel to the compression direction. This phenomenon was observed with scanning electron microscopy, especially in the oriented skin layers of IM specimens, where a chevron morphology resulting from lamellae microbuckling/kinking was evidenced. Macroscopically, this instability manifested as the so-called "second macroscopic yield" in the form of a hump in the true stress-true strain curve. Microbuckling instability can have a profound effect on the subsequent stages of the deformation process, as well as the resulting structure. This is particularly important in deforming well-oriented lamellar structures-e.g., in drawing pre-oriented films of a semicrystalline polymer, a process commonly used in many technologies.Infections with eggs of Echinococcus granulosus sensu lato (s.l.) can cause cystic echinococcosis in intermediate host animals and humans. Upon ingestion of viable eggs, oncospheres hatch from the eggs and subsequently develop into fluid-filled larval cysts, most frequently in the liver or the lungs. The slowly growing cysts progressively interfere with organ function. The risk of infection is determined by the host range of the parasite, its pathogenicity and other epidemiologically relevant parameters, which differ significantly among the five species within the E. granulosus s.l. complex. It is therefore essential to diagnose the correct species within E. granulosus s.l. to help understand specific disease epidemiology and to facilitate effective implementation of control measures. For this purpose, simple, fast and cost-effective typing techniques are needed. We developed quantitative real-time polymerase chain reactions (qPCRs) to target polymorphic regions in the mitochondrial genome of E. granulosus s.l. In a single-step typing approach, we distinguished E. granulosus s.l. members in four epidemiologically relevant subgroups. These were E. granulosus sensu stricto, E. equinus, E. ortleppi and the E. canadensis cluster. The technique also allowed identification and differentiation of these species from other Echinococcus or Taenia taxa for samples isolated from cysts or faeces.Limestone is a relatively abundant and low-cost material used for producing calcium oxide as a CO2 adsorbent. However, the CO2 capture capacity of limestone decreases rapidly after multiple carbonation/calcination cycles. To improve the CO2 capture performance, we developed a process using limestone to transform the material into a rod Ca-based metal-organic framework (Ca-MOF) via a hydrothermal process with the assistance of acetic acid and terephthalic acid (H2BDC). The structural formation of rod Ca-MOF may result from the (200) face-oriented attachment growth of Ca-MOF sheets. Upon heat treatment, a highly stable porous rod network with a calcined Ca-MOF-O structure was generated with a pore distribution of 50-100 nm, which allowed the rapid diffusion of CO2 into the interior of the sorbent and enhanced the CO2 capture capacity with high multiple carbonation-calcination cycle stability compared to limestone alone at the intermediate temperature of 450 °C. The CO2 capture capacity of the calcined porous Ca-MOF-O network reached 52 wt% with a CO2 capture stability of 80% after 10 cycles.