Edible Asian Ferns like a Dietary Way to obtain LongChain Polyunsaturated Fatty Acids

From Stairways
Jump to navigation Jump to search

Detecting and correcting incorrect body movements is an essential part of everyday interaction with one's environment. The human brain provides a monitoring system that constantly controls and adjusts our actions according to our surroundings. However, when our brain's predictions about a planned action do not match the sensory inputs resulting from that action, cognitive conflict occurs. Much is known about cognitive conflict in 1D/2D environments; however, less is known about the role of movement characteristics associated with cognitive conflict in 3D environment. Hence, we devised an object selection task in a virtual reality (VR) environment to test how the velocity of hand movements impacts human brain responses. From a series of analyses of EEG recordings synchronized with motion capture, we found that the velocity of the participants' hand movements modulated the brain's response to proprioceptive feedback during the task and induced a prediction error negativity (PEN). Additionally, the PEN originates in the anterior cingulate cortex and is itself modulated by the ballistic phase of the hand's movement. These findings suggest that velocity is an essential component of integrating hand movements with visual and proprioceptive information during interactions with real and virtual objects.Magnetic resonance fingerprinting (MRF) is highly promising as a quantitative MRI technique due to its accuracy, robustness, and efficiency. Previous studies have found high repeatability and reproducibility of 2D MRF acquisitions in the brain. Here, we have extended our investigations to 3D MRF acquisitions covering the whole brain using spiral projection k-space trajectories. Our travelling head study acquired test/retest data from the brains of 12 healthy volunteers and 8 MRI systems (3 systems at 3 T and 5 at 1.5 T, all from a single vendor), using a study design not requiring all subjects to be scanned at all sites. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived PD T1 and T2 maps to an anatomical atlas, coefficients of variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated a high repeatability (CVs 0.7-1.3% for T1, 2.0-7.8% for T2, 1.4-2.5% for normalized PD) and reproducibility (CVs of 2.0-5.8% for T1, 7.4-10.2% for T2, 5.2-9.2% for normalized PD) in gray and white matter. Both repeatability and reproducibility improved when compared to similar experiments using 2D acquisitions. Three-dimensional MRF obtains highly repeatable and reproducible estimations of T1 and T2, supporting the translation of MRF-based fast quantitative imaging into clinical applications.Notwithstanding the apparent demands regarding fine motor skills that are required to perform in action video games, the motor nervous system of players has not been studied systematically. In the present study, we hypothesized to find differences in sensorimotor performance and corticospinal characteristics between action video game players (Players) and Controls. We tested sensorimotor performance in video games tasks and used transcranial magnetic stimulation (TMS) to measure motor map, input-output (IO) and short intra-cortical inhibition (SICI) curves in the first dorsal interosseous (FDI) muscle of Players (n = 18) and Control (n = 18). Players scored higher in performance tests and had stronger SICI and higher motor evoked potential (MEP) amplitudes. Multiple linear regressions showed that Players and Control differed with respect to their relation between reaction time and corticospinal excitability. However, we did not find different motor map topography or different IO curves for Players when compared to Controls. Action video game players showed an increased efficiency of motor cortical inhibitory and excitatory neural networks. Players also showed a different relation of MEPs with reaction time. The present study demonstrates the potential of action video game players as an ideal population to study the mechanisms underlying visuomotor performance and sensorimotor learning.New insights into the functional neuroanatomic correlates of emotions point toward the involvement of the cerebellum in anger and aggression. To identify cerebellar regions commonly activated in tasks examining the experience of anger and threat as well as exerting an aggressive response, two coordinate-based activation likelihood estimation meta-analyses reporting a total of 57 cerebellar activation foci from 819 participants were performed. For anger processing (18 studies), results showed significant clusters in the bilateral posterior cerebellum, overlapping with results from previous meta-analyses on emotion processing, and implying functional connectivity to cognitive, limbic, and social canonic networks in the cerebral cortex. By contrast, active aggression expression (10 studies) was associated with significant clusters in more anterior regions of the cerebellum, overlapping with cerebellar somatosensory and motor regions and displaying functional connectivity with the somatomotor and default mode network. This study not only strengthens the notion that the cerebellum is involved in emotion processing, but also provides the first quantitative evidence for distinct cerebellar functional activation patterns related to anger and aggression.Pairs of participants mutually communicated (or not) biographical information to each other. By combining simultaneous eye-tracking, face-tracking and functional near-infrared spectroscopy, we examined how this mutual sharing of information modulates social signalling and brain activity. When biographical information was disclosed, participants directed more eye gaze to the face of the partner and presented more facial displays. We also found that spontaneous production and observation of facial displays was associated with activity in the left SMG and right dlPFC/IFG, respectively. Moreover, mutual information-sharing increased activity in bilateral TPJ and left dlPFC, as well as cross-brain synchrony between right TPJ and left dlPFC. This suggests that a complex long-range mechanism is recruited during information-sharing. STINGinhibitorC178 These multimodal findings support the second-person neuroscience hypothesis, which postulates that communicative interactions activate additional neurocognitive mechanisms to those engaged in non-interactive situations.