Graphic Reputation and Discovery of Clindamycin through AuAg CoreShell Nanoparticles

From Stairways
Jump to navigation Jump to search

The proposed approach has been applied to a set of small organic molecules and alanine tetrapeptide, demonstrating an up to twofold decrease in the root mean squared errors for force predictions on non-equilibrium geometries of these molecules. Furthermore, our ML models demonstrate superior stability over the default training approaches, allowing reliable study of processes involving highly out-of-equilibrium molecular configurations. These results hold for both kernel-based methods (sGDML and GAP/SOAP models) and deep neural networks (SchNet model).Nonlinear terahertz (THz) spectroscopy relies on the interaction of matter with few-cycle THz pulses of electric field amplitudes up to megavolts/centimeter (MV/cm). In condensed-phase molecular systems, both resonant interactions with elementary excitations at low frequencies such as intra- and intermolecular vibrations and nonresonant field-driven processes are relevant. Two-dimensional THz (2D-THz) spectroscopy is a key method for following nonequilibrium processes and dynamics of excitations to decipher the underlying interactions and molecular couplings. This article addresses the state of the art in 2D-THz spectroscopy by discussing the main concepts and illustrating them with recent results. The latter include the response of vibrational excitations in molecular crystals up to the nonperturbative regime of light-matter interaction and field-driven ionization processes and electron transport in liquid water.Nonlinear optical properties of organic chromophores are of great interest in diverse photonic and optoelectronic applications. To elucidate general trends in the behaviors of molecules, large amounts of data are required. Vismodegib solubility dmso Therefore, both an accurate and a rapid computational approach can significantly promote the theoretical design of molecules. In this work, we combined quantum chemistry and machine learning (ML) to study the first hyperpolarizability (β) in [2.2]paracyclophane-containing push-pull compounds with various terminal donor/acceptor pairs and molecular lengths. To generate reference β values for ML, the ab initio elongation finite-field method was used, allowing us to treat long polymer chains with linear scale efficiency and high computational accuracy. A neural network (NN) model was built for β prediction, and the relevant molecular descriptors were selected using a genetic algorithm. The established NN model accurately reproduced the β values (R2 > 0.99) of long molecules based on the input quantum chemical properties (dipole moment, frontier molecular orbitals, etc.) of only the shortest systems and additional information about the actual system length. To obtain general trends in molecular descriptor-target property relationships learned by the NN, three approaches for explaining the ML decisions (i.e., partial dependence, accumulated local effects, and permutation feature importance) were used. The effect of donor/acceptor alternation on β in the studied systems was examined. The asymmetric extension of molecular regions end-capped with donors and acceptors produced unequal β responses. The results revealed how the electronic properties originating from the nature of substituents on the microscale controlled the magnitude of β according to the NN approximation. The applied approach facilitates the conceptual discoveries in chemistry by using ML to both (i) efficiently generate data and (ii) provide a source of information about causal correlations among system properties.The biological function and folding mechanisms of proteins are often guided by large-scale slow motions, which involve crossing high energy barriers. In a simulation trajectory, these slow fluctuations are commonly identified using a principal component analysis (PCA). Despite the popularity of this method, a complete analysis of its predictions based on the physics of protein motion has been so far limited. This study formally connects the PCA to a Langevin model of protein dynamics and analyzes the contributions of energy barriers and hydrodynamic interactions to the slow PCA modes of motion. To do so, we introduce an anisotropic extension of the Langevin equation for protein dynamics, called the LE4PD-XYZ, which formally connects to the PCA "essential dynamics." The LE4PD-XYZ is an accurate coarse-grained diffusive method to model protein motion, which describes anisotropic fluctuations in the alpha carbons of the protein. The LE4PD accounts for hydrodynamic effects and mode-dependent free-energy barriers. This study compares large-scale anisotropic fluctuations identified by the LE4PD-XYZ to the mode-dependent PCA predictions, starting from a microsecond-long alpha carbon molecular dynamics atomistic trajectory of the protein ubiquitin. We observe that the inclusion of free-energy barriers and hydrodynamic interactions has important effects on the identification and timescales of ubiquitin's slow modes.Resonant two-photon ionization spectroscopy has been employed to observe sharp predissociation thresholds in the spectra of the lanthanide sulfides and selenides for the 4f metals Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Lu. As these molecules possess a large density of electronic states near the ground separated atom limit, these predissociation thresholds are argued to coincide with the true 0 K bond dissociation energies (BDEs). This is because spin-orbit and nonadiabatic couplings among these states allow the molecules to predissociate rapidly when the BDE is reached or exceeded. The measured BDEs, in eV, are as follows 5.230(3) (PrS), 4.820(3) (NdS), 4.011(17) (SmS), 3.811(8) (EuS), 5.282(5) (GdS), 5.292(3) (TbS), 4.298(3) (DyS), 4.251(3) (HoS), 4.262(3) (ErS), 5.189(3) (LuS), 4.496(3) (PrSe), 4.099(3) (NdSe), 3.495(17) (SmSe), 3.319(3) (EuSe), 4.606(3) (GdSe), 4.600(6) (TbSe), 3.602(3) (DySe), 3.562(3) (HoSe), 3.587(3) (ErSe), and 4.599(6) (LuSe). Through the use of thermochemical cycles, the 0 K gaseous heat of formation, ΔfH0K ○, is reported for each molecule. A threshold corresponding to the onset of two-photon ionization in EuSe was also observed, providing the ionization energy of EuSe as 6.483(10) eV. Through a thermochemical cycle and the above reported BDE of the neutral EuSe molecule, the BDE for the Eu+-Se cation was also determined as D0(Eu+-Se) = 2.506(10) eV. Bonding trends of the lanthanide sulfides and selenides are discussed. Our previous observation that the transition metal sulfides are 15.6% more strongly bound than the corresponding selenides continues to hold true for the lanthanides as well.