HighPerformance WaveguideIntegrated Bi2O2Se Photodetector for Suppos que Photonic Builtin Tour

From Stairways
Jump to navigation Jump to search

This study develops a method to reuse aquaculture wastewater and sediment from a catfish pond in order to increase agricultural productivity and protect the environment. Material flow analysis (MFA) is a central concept of this study that involves collecting catfish pond wastewater (CPW) and reusing it to irrigate five water spinach (Ipomoea aquatic) ponds before discharging it into a river. Typically, catfish pond sediment (CPS) was collected and composted to produce organic fertilizer for cornfields. The results revealed that pollutant removal efficiency of wastewater from CPW (by using water spinach) were total organic carbon (TOC) = 38.78%, nitrogen (N) = 27.07%, phosphorous (P) = 58.42%, and potassium (K) = 28.64%. By adding 20 tons of CPS compost per hectare of the cornfield, the corn yield boosted 15% compared to the control field. In addition, the water spinach grew and developed well in the medium of wastewater from the fish pond. Altogether, the results illustrate that catfish pond wastewater and sediment can act as organic fertilizers for crops meanwhile reduce environmental pollution from its reuse.The design of eco-friendly Bi1.81MnNbO6.72/sulfite system for efficient degradation of chlortetracycline was achieved. The feasibility of synthesizing Bi1.81MnNbO6.72 by hydrothermal method was determined by X-ray diffraction. The magnetic test suggested that Bi1.81MnNbO6.72 possessed paramagnetic properties, indicating unpaired electrons were present. Scanning electron microscope and transmission electron microscopy images revealed that Bi1.81MnNbO6.72 octahedra exhibited exposed [1,1,1] crystal plane containing high density of Bi, Mn and Nb metal atoms. Large numbers of metal atoms will facilitate heterogeneous catalytic process. In a batch system with aeration, Bi1.81MnNbO6.72 could be used as sulfite activator for the disposal of chlortetracycline. SR-717 The reaction kinetics of the degradation process conformed to the pseudo-second-order kinetic model. In Bi1.81MnNbO6.72/sulfite process, initial pH, Bi1.81MnNbO6.72 dosage, sulfite and chlortetracycline concentrations, as well as inorganic salt ions had great effect on chlortetracycline degradation. Under optimal conditions, the efficiency of Bi1.81MnNbO6.72/sulfite system for degradation of chlortetracycline could reach 76.2%. link2 Moreover, Mn (II) plays a key role in the initiation of the catalytic reaction in Bi1.81MnNbO6.72/sulfite process. Generated SO3●‒ could act as main reactive species in Bi1.81MnNbO6.72/sulfite process, while HO● was also involved. Three new degradation products were detected by UHPLC/MS/MS and the possible degradation pathways in this system were proposed. Based on this, we believe that Bi1.81MnNbO6.72/sulfite is a type of process for degradation of organic contaminants with research significance and application prospects.Magnetic seeding coagulation (MSC) process has been used to accelerate flocs sedimentation with an applied magnetic field, offering large handling capacity and low energy consumption. The interactions of three typical Al species, aluminum chloride (AlCl3), Al13O4(OH)247+ polymer (Al13), and (AlO4)2Al28(OH)5618+ polymer (Al30), with magnetic particles (MPs) were examined to clarify the MSC process. In traditional coagulation (TC) process, the aggregation of primary Ala-dissolved organic matter (DOM) complexes with in-situ-formed polynuclear species generated a large average floc size (226 μm), which was proved to be efficient for DOC removal (52.6%). The weak connections between dissolved Ala-DOM complexes and MPs led to the negligible changes of dissolved Al after seeding with MPs in AlCl3. A significant interaction between MPs and Al13 was observed, in which the MPs-Al13-DOM complexes were proposed to be responsible for the significant improvement of DOC removal (from 47% to 52%) and residual total Al reduction (from 1.05 to 0.27 mg Al L-1) with MPs addition. Al30 produced a lower floc fractal dimension (Df = 1.88) than AlCl3 (2.08) and Al13 (1.99) in the TC process, whereas its floc strength (70.9%) and floc recovery (38.5%) were higher than the others. Although more detached fragments were produced with MPs addition, the effective sedimentation of these fragments with the applied magnetic field led to the decrease of residual turbidity and colloidal Al in Al30. The dependence of coagulation behavior to MPs and different Al species can be applied to guide the application of an effective MSC process.Membrane biofouling poses severe impacts on the membrane lifespan and performance. In this study, a silver nanoparticles-graphene oxide hybrid nanosheet (AgNPs-GO) was synthesized as a bactericidal agent for effective membrane biofouling mitigation. The surface polymerization between polyvinyl alcohol (PVA) and AgNPs-GO nanosheet improved the stability of inorganic biocidal materials on the membrane surface and had a significant effect on the permeability and rejection performance of membranes. The PVA/AgNPs-GO modified hydrophilic polyvinylidene fluoride (H-PVDF) membrane exhibited an excellent anti-microbial activity in both static contact and filtration modes; nearly 100% inactivation of Pseudomonas aeruginosa in solution and 91% reduction in the membrane surface adhesion were found. The composite membrane with good stability and anti-microbial ability may offer an alternative to alleviate membrane biofouling problem.Geminiviruses are a family of single-stranded DNA viruses that infect many plant species and cause serious diseases in important crops. The plant protein kinase, SnRK1, has been implicated in host defenses against geminiviruses. Overexpression of SnRK1 makes plants more resistant to geminivirus infection, and knock-down of SnRK1 increases susceptibility to geminivirus infection. GRIK, the SnRK1 activating kinase, is upregulated by geminivirus infection, while the viral C2 protein inhibits the SnRK1 activity. SnRK1 also directly phosphorylates geminivirus proteins to reduce infection. These data suggest that SnRK1 is involved in the co-evolution of plant hosts and geminiviruses.Non-specific histone deacetylase (HDAC) inhibition reduces high blood pressure in essential hypertensive animal models. However, the exact HDAC isoforms that play a critical role in controlling hypertension are not known. Here, we investigated the role of HDAC5 in vascular contraction, hypertrophy, and oxidative stress in the context of angiotensin II (Ang II)-induced hypertension. Genetic deletion of HDAC5 and treatment with class IIa HDAC inhibitors (TMP269 and TMP195) prevented Ang II-induced increases in blood pressure and arterial wall thickness. link3 Hdac5-knockout mice were also resistant to the thromboxane A2 agonist (U46619)-induced vascular contractile response. Furthermore, the expression of Rho-associated protein kinase (ROCK) 2 was downregulated in the aortas of Ang II-treated Hdac5-knockout mice. Knockdown of HDAC5, RhoA, or ROCK2 reduced collagen gel contraction, whereas silencing of ROCK1 increased it. VSMC hypertrophy reduced on knocking down HDAC5, ROCK1, and ROCK2. Here we showed that genetic deletion of HDAC5 and pharmacological inhibition of class IIa HDACs ameliorated Ang II-induced ROS generation. Moreover, ROCK1 and ROCK2, the downstream targets of HDAC5, influenced ROS generation. The relative protein levels of HDAC5, ROCK1, and ROCK2 were increased both in the cytoplasm and nuclear fraction in response to Ang II stimulation in vascular smooth muscle cells. Inhibition of HDAC5 expression or activity reduced vascular hypertrophy, vasoconstriction, and oxidative stress in the Ang II-induced hypertension model. These findings indicate that HDAC5 may serve as a potential target in the treatment of hypertension.A promising direction in Biopharmaceuticals is the development of specific peptide-based systems to improve drug delivery. This approach may increase tumor specificity and drug penetration into the target cell. Similar systems have been designed for several antitumor drugs. However, for photodynamic therapy drugs, such studies are not yet enough. Previously, we have developed a method of inclusion of chlorin e6 (Ce6), a photosensitizer used in photodynamic therapy, in phospholipid nanoparticles with a diameter of up to 30 nm, and reported an increase in its effectiveness in the experiments in vivo. In this work, we propose to modify a previously developed delivery system for Ce6 by the addition of cell-penetrating (R7) and/or targeting NGR peptides. The interaction of the compositions developed with HepG2 and MCF-7 tumor cells is shown. The expression of CD13 protein with affinity to NGR on the surface of these cells has been studied using flow cytometry. The expression of this protein on the HepG2 cells and its absence on MCF-7 was demonstrated. After incubation of tumor cells with the resulting Ce6 compositions, we evaluated the cellular accumulation, photoinduced, and dark cytotoxicity of the drugs. After irradiation, the highest level of cytotoxicity was observed when R7 peptide was added to the system, either alone or in combination with NGR. In addition to R7, the NGR-motif peptide increased the internalization of Ce6 in HepG2 cells without affecting its photodynamic activity. In this work we also discuss possible mechanisms of action of the cell-penetrating peptide when attached to phospholipid nanoparticles.Absence epilepsy, characterized by transient loss of awareness and bilaterally synchronous 2-4 Hz spike and wave discharges (SWDs) on electroencephalography (EEG) during absence seizures, is generally believed to arise from abnormal interactions between the cerebral cortex (Ctx) and thalamus. Recent animal electrophysiological studies suggested that changing the neural activation level of the external globus pallidus (GPe) neurons can remarkably modify firing rates of the thalamic reticular nucleus (TRN) neurons through the GABAergic GPe-TRN pathway. However, the existing experimental evidence does not provide a clear answer as to whether the GPe-TRN pathway contributes to regulating absence seizures. Here, using a biophysically based mean-field model of the GPe-corticothalamic (GCT) network, we found that both directly decreasing the strength of the GPe-TRN pathway and inactivating GPe neurons can effectively suppress absence seizures. Also, the pallido-cortical pathway and the recurrent connection of GPe neurons facilitate the regulation of absence seizures through the GPe-TRN pathway. Specifically, in the controllable situation, enhancing the coupling strength of either of the two pathways can successfully terminate absence seizures. Moreover, the competition between the GPe-TRN and pallido-cortical pathways may lead to the GPe bidirectionally controlling absence seizures, and this bidirectional control manner can be significantly modulated by the Ctx-TRN pathway. Importantly, when the strength of the Ctx-TRN pathway is relatively strong, the bidirectional control of absence seizures by changing GPe neural activities can be observed at both weak and strong strengths of the pallido-cortical pathway.These findings suggest that the GPe-TRN pathway may have crucial functional roles in regulating absence seizures, which may provide a testable hypothesis for further experimental studies and new perspectives on the treatment of absence epilepsy.