HydroxyapatiteNELL1 Nanoparticles Electrospun Fibers with regard to Osteoinduction inside Bone Tissue Design Program

From Stairways
Jump to navigation Jump to search

UiO-66-NH2@eosin Y composite was obtained by confining eosin Y (EY) into the cavities of Zr-MOF and could emit two fluorescence peaks at 453 and 543 nm at an excitation wavelength of 355 nm. This multi-responsive and multifunctional ratiometric fluorescent nanoprobe not only enable directly distinct detection of F-/Cr2O72- with ultra-high selectivity and sensitivity, but also could indirectly monitor the concentration of urea based on unique enzymatic hydrolysis reaction. The multifunctional probe was utilized for fluorescence labeling F-/Cr2O72- in sweat latent fingerprint through an environmentally friendly powder strategy and exhibited obvious luminescence visualization changes. Notably, the corresponding portable on-line test strips of probe for detection of F- and Cr2O72- were made for monitoring the levels of F- and Cr2O72-. Furthermore, the probe was applied to evaluate the degrees of F-/Cr2O72- in HepG-2 cell and urea in serum with superior results,which indicate the potential application of the as-synthesized UiO-66-NH2@EY as multifunctional probe for the detection of F-, Cr2O72- and urea in biological samples. Finally, in order to extend the device-based applications of probe, an AND-OR-coupled molecular logic gate was put on agenda.This work investigated the removal efficiency of disinfection by-product (DBP) precursors by different drinking water treatment processes and evaluated the feasibility of using fluorescence components removal as an indicator. A four-component (including tryptophan-like, protein-bound, tyrosine-like, and humic-like components) parallel factor analysis model was developed basing on 288 fluorescence excitation-emission matrices. Among all treatment processes, coagulation-sedimentation process showed the best performance, with mean removal ratios of 30% in total fluorescence intensity and 31% in total formation potential (FP) of DBPs, respectively. It preferentially removed humic-like component C4 (43%). Advanced treatment processes were less effective in comparison. Ozone and biological activated carbon (BAC) combined process reduced 20% of total fluorescence intensity, while ultrafiltration process reduced C3.The adsorption performances on graphitic carbon nitride (g-C3N4) surface were investigated for organic dye pollutants by both experimental and calculation methods. For experimental investigation, adsorption thermodynamics and kinetics results were in-situ obtained and evaluated. With [Formula see text] by Langmuir modeling, g-C3N4 showed superior adsorption spontaneity of MB+ >MO-. With linear and exponential modeling, g-C3N4 showed only adsorption process for MB+ but both diffusion and adsorption processes for MO-. For simulation insight, all MB+ molecules but only parts of MO- molecules were inclined to orient in parallel position at g-C3N4 surface after optimization during low concentration. And both MB+ and MO- molecules were inclined to orient in perpendicular position at g-C3N4 surface after optimization during high concentration. Combined with experimental and calculation results, a molecular-orientation and force-dominance mechanism adsorption model are proposed to explain the surface interaction processes between dyes and g-C3N4. Electrostatic interaction and π-π stacking interaction were revealed to dominate for MB+ adsorption, and π-π stacking interaction and van der Waals force were revealed to dominate for MO- adsorption. This work obtained 'localized' interfacial information and elucidated in-situ intermolecular interactions at g-C3N4 interface, which can provide fundamental basis for operation removal of organic dye pollutants by g-C3N4.This study investigates the potential of crude oil degrading capabilities of biosurfactant-producing strains of Pseudomonas aeruginosa MF069166 and Meyerozyma sp. MF138126. P. aeruginosa produced mono-/di-rhamnolipids congeners whereas, Meyerozyma sp. produced acidic and lactonic forms of sophorolipids with crude oil. The values of critical micelle concentrations of rhamnolipids and sophorolipids were 40 mg/L and 50 mg/L with reductions in surface tension of water to 29 mN/m and 33 mN/m. Dynamic light scattering revealed that the average diameter of micellar aggregates of rhamnolipids ranged between 300 and 350 nm and the average size of sophorolipids micelles was 309 nm and 380 nm. Biosurfactants from P. IPI-145 PI3K inhibitor aeruginosa and Meyerozyma sp. exhibited emulsification activities of 87% and 84% in crude oil. Cell surface hydrophobicity of both strains was higher in the presence of hydrophobic contaminants. The biosurfactants showed stability under varying pH, NaCl concentrations and temperatures. Gravimetric and GC-MS analyses demonstrated that P. aeruginosa degraded 91% of the petroleum hydrocarbons while Meyerozyma sp. showed 87% biodegradation efficiency. P. aeruginosa and Meyerozyma sp. have also been found to degrade halogen-containing compounds and showed excellent crude oil degradation efficiency. It is concluded that both strains have high potential of applications in the bioremediation of hydrocarbons-contaminated sites.Adsorption desulfurization represents an alternative technology for the effective removal of thiophenic compounds from fuels. Metal-organic frameworks have been the ideal candidates for the adsorptive desulfurization of fuel due to the high surface areas. Pristine UiO-66 is thought to be appropriate for the removal of small thiophenic compounds. This work developed a new type of hierarchical-pore (micro and mesopores) UiO-66 with a higher specific surface area and porosity for the removal of larger adsorbates using MOF-5 as the template. To enhance adsorption desulfurization performance, the Ag+-exchanged hierarchical-pore UiO-66 (HP-UiO-66-SO3Ag) with π-complexation was synthesized by the ion-exchange method. The HP-UiO-66-SO3Ag samples were characterized by FTIR, XRD, SEM, TEM, and N2 adsorption-desorption isotherms. Compared with the original UiO-66, the HP-UiO-66-SO3Ag has a higher specific surface area, pore volume, and pore size. The static adsorption experiments showed that HP-UiO-66-SO3Ag had a high adsorption capacity for thiophene and benzothiophene. Moreover, the HP-UiO-66-SO3Ag sample still exhibits high adsorptive performance in the presence of toluene. The regeneration results show that about 90% of the initial adsorption capacity of HP-UiO-66-SO3Ag can be regenerated after four cycles.