Ideal version in chemistry and biology
This work aims to prepare the silicon nanoparticles with the nanocrystal-embedded amorphous structure through spark erosion followed by bead milling. Spark erosion breaks up monocrystal silicon ingots into micro/nanoparticles, refines the crystal grains, makes the crystals randomly disordered, and increases isotropic character. Bead milling further refines the crystal grains to a few nanometers and increases the amorphous portion in the structure, eventually forming an amorphous structure with the nanocrystals embedded. Spark erosion saves much time and energy for bead milling. The crystallite size and the amount of amorphous phase could be controlled through varying pulse durations of spark discharge and bead milling time. The final particles could contain the nanocrystals as small as 4 nm and the content of amorphous phase as high as 84% and could be considered as amorphous-like Si nanoparticles. This processing route for Si nanoparticles greatly reduced the production time and the energy consumption and, more importantly, is structure-controllable and scalable for mass production of the products with higher purity.Improved proton conductivity and high durability are now a high concern for proton exchange membranes (PEMs). Therefore, highly proton conductive PEMs have been synthesized from branched sulfonimide-based poly(phenylenebenzophenone) (SI-branched PPBP) with excellent thermal and chemical stability. The branched polyphenylene-based carbon-carbon backbones of the SI-branched PPBP membranes were attained from the 1,4-dichloro-2,5-diphenylenebenzophenone (PBP) monomer using 1,3,5-trichlorobenzene as a branching agent (0.1%) via the Ni-Zn catalyzed C-C coupling reaction. The as-synthesized SI-branched PPBP membranes showed 1.00~1.86 meq./g ion exchange capacity (IEC) with unique dimensional stability. The sulfonimide groups of the SI-branched PPBP membranes had improved proton conductivity (75.9-121.88 mS/cm) compared to Nafion 117 (84.74 mS/cm). Oxidation stability by thermogravimetric analysis (TGA) and Fenton's test study confirmed the significant properties of the SI-branched PPBP membranes. Additionally, a very distinct microphase separation between the hydrophobic and hydrophilic moieties was observed using atomic force microscopic (AFM) analysis. The properties of the synthesized SI-branched PPBP membranes demonstrate their viability as an alternative PEM material.Alcohol consumption is a risk factor for the development of several cancers, including those of the head and neck and the esophagus. The underlying mechanisms of alcohol-induced carcinogenesis remain unclear; however, at these sites, alcohol-derived acetaldehyde seems to play a major role. Proteasome structure By reacting with DNA, acetaldehyde generates covalent modifications (adducts) that can lead to mutations. Previous studies have shown a dose dependence between levels of a major acetaldehyde-derived DNA adduct and alcohol exposure in oral-cell DNA. The goal of this study was to optimize a mass spectrometry (MS)-based DNA adductomic approach to screen for all acetaldehyde-derived DNA adducts to more comprehensively characterize the genotoxic effects of acetaldehyde in humans. A high-resolution/-accurate-mass data-dependent constant-neutral-loss-MS3 methodology was developed to profile acetaldehyde-DNA adducts in purified DNA. This resulted in the identification of 22 DNA adducts. In addition to the expected N2-ethyldeoxyguanosine (after NaBH3CN reduction), two previously unreported adducts showed prominent signals in the mass spectra. MSn fragmentation spectra and accurate mass were used to hypothesize the structure of the two new adducts, which were then identified as N6-ethyldeoxyadenosine and N4-ethyldeoxycytidine by comparison with synthesized standards. These adducts were quantified in DNA isolated from oral cells collected from volunteers exposed to alcohol, revealing a significant increase after the exposure. In addition, 17 of the adducts identified in vitro were detected in these samples confirming our ability to more comprehensively characterize the DNA damage deriving from alcohol exposures.Heat stress is one of the production constraints for tomato (Solanum lycopersicum L.) due to unfavorable, above optimum temperatures. This research was undertaken to evaluate growth and fruit yield of tomato genotypes under three contrasting growing conditions (i.e., optimal temperature in field-, high temperature in field- and high temperature in greenhouse conditions) to determine their relative heat tolerance. Eleven tomato genotypes, including two local check varieties, were evaluated, and data on growth and yield were measured and analyzed. The interactions between the genotypes and growing conditions for all yield traits were significant. In general, the performance of tomato under optimal temperature field conditions was better than under high temperature field- and greenhouse conditions. Genotypes CLN1621L, CLN2026D, CLN3212C, and KK1 had consistently greater fruit yield per plant in all growing conditions. Although the local genotype, Neang Tamm, had lower yield under optimal conditions, it performed moderately well under high temperature field- and high temperature greenhouse conditions, and yield decrease under high temperature condition was minimal. Genotype CLN1621L had stable fruit setting compared to other genotypes under high temperature conditions. Since fruit setting and yield are important traits for heat tolerance, genotypes CLN1621L and Neang Tamm are potential candidates for breeding programs focused on improved yield and heat stress tolerance.While existing research acknowledges copious challenges faced by older adults (people aged 60 and over) in Ghana and most countries in sub-Saharan Africa, they fail to situate the lived experiences of this vulnerable group within the broader context of health geography and public health. This paper draws insights from ecological systems theory and the "geographies of older people" literature to examine the lived experiences of older people in Ghana. Data for the study were gathered using interviews (42) and sharing circles (10). Our findings reveal a complex mix of experiences consistent with the different levels of the environment. Dominant themes include access to social support, functional impairment and poor health status, social status, poor access to water and sanitation services, food insecurity, economic insecurity, and caregiving burden. These findings support the wide-held notion that the experiences of older people are complex and produced by the interplay of both individual and structural factors.