Marketplace analysis ecology regarding Guinea baboons Papio papio

From Stairways
Jump to navigation Jump to search

Investigating the symbionts of shipworms is a powerful example of this principle.It is increasingly evident that plants interact with their outside world through the production of volatile organic compounds,1-5 but whether the volatiles have evolved to serve in plant defense is still a topic of considerable debate.3,6-8 Unharmed leaves constitutively release small amounts of volatiles, but when the leaves are damaged by herbivorous arthropods, they emit substantially more volatiles. selleck chemical These herbivore-induced plant volatiles (HIPVs) attract parasitoids and predators that kill insect herbivores,9-12 and this can benefit the plants.13,14 As yet, however, there is no tangible evolutionary evidence that this tritrophic interplay contributes to the selection forces that have shaped the volatile emissions of plants.2,3,5-8,15 With this in mind, we investigated the evolutionary changes in volatile emissions in invasive common ragwort and the respective defensive roles of its constitutive and inducible volatiles. This Eurasian plant has invaded other continents, where it evolved for many generations in the absence of specialized herbivores and their natural enemies. We found that, compared to native ragworts, invasive plants release higher levels of constitutive volatiles but considerably lower levels of herbivore-induced volatiles. As a consequence, invasive ragwort is more attractive to a specialist moth but avoided by an unadapted generalist moth. Importantly, conforming to the indirect defense hypothesis, a specialist parasitoid was much more attracted to caterpillar-damaged native ragwort, which was reflected in higher parasitism rates in a field trial. The evolution of foliar volatile emissions appears to be indeed driven by their direct and indirect roles in defenses against insects.Not much is known about how the dentate gyrus (DG) and hippocampal CA3 networks, critical for memory and spatial processing, malfunction in Alzheimer's disease (AD). While studies of associative memory deficits in AD have focused mainly on behavior, here, we directly measured neurophysiological network dysfunction. We asked what the pattern of deterioration of different networks is during disease progression. We investigated how the associative memory-processing capabilities in different hippocampal subfields are affected by familial AD (fAD) mutations leading to amyloid-β dyshomeostasis. Specifically, we focused on the DG and CA3, which are known to be involved in pattern completion and separation and are susceptible to pathological alterations in AD. To identify AD-related deficits in neural-ensemble dynamics, we recorded single-unit activity in wild-type (WT) and fAD model mice (APPSwe+PSEN1/ΔE9) in a novel tactile morph task, which utilizes the extremely developed somatosensory modality of mice. As expected from the sub-network regional specialization, we found that tactile changes induced lower rate map correlations in the DG than in CA3 of WT mice. This reflects DG pattern separation and CA3 pattern completion. In contrast, in fAD model mice, we observed pattern separation deficits in the DG and pattern completion deficits in CA3. This demonstration of region-dependent impairments in fAD model mice contributes to understanding of brain networks deterioration during fAD progression. Furthermore, it implies that the deterioration cannot be studied generally throughout the hippocampus but must be researched at a finer resolution of microcircuits. This opens novel systems-level approaches for analyzing AD-related neural network deficits.Evolution on islands, together with the often extreme phenotypic changes associated with it, has attracted much interest from evolutionary biologists. However, measuring the rate of change of phenotypic traits of extinct animals can be challenging, in part due to the incompleteness of the fossil record. Here, we use combined molecular and fossil evidence to define the minimum and maximum rate of dwarfing in an extinct Mediterranean dwarf elephant from Puntali Cave (Sicily).1 Despite the challenges associated with recovering ancient DNA from warm climates,2 we successfully retrieved a mitogenome from a sample with an estimated age between 175,500 and 50,000 years. Our results suggest that this specific Sicilian elephant lineage evolved from one of the largest terrestrial mammals that ever lived3 to an island species weighing less than 20% of its original mass with an estimated mass reduction between 0.74 and 200.95 kg and height reduction between 0.15 and 41.49 mm per generation. We show that combining ancient DNA with paleontological and geochronological evidence can constrain the timing of phenotypic changes with greater accuracy than could be achieved using any source of evidence in isolation.In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.