Most uptodate innovations within foodgrade shipping programs pertaining to probiotics A systematic evaluation

From Stairways
Jump to navigation Jump to search

Foreign Direct Investment inflows seem to be more environmentally friendly than inward stock, particularly in the electricity and services sectors. Energy transition could be achieved without the polluting effect of Foreign Direct Investment. Investment in the electricity sector may be a way of decoupling economic growth from pollution.In phenol contaminated soils from an industrial site, soil compaction and soil chemical contaminants influenced germination, emergence, and early plant growth (roots and shoots) for Thrift (Ameria maratima) and Blackbutt oats (Avena sativa). The specific effects were of soil compaction (low, 100 psi and high, 800 psi) at two concentrations of phenol (biotreated, ∼200 mg kg-3; untreated, ∼1150 mg kg-3). Plant responses to compaction and phenol varies between the two species. Emergence of Thrift showed greater sensitivity to increasing soil compaction but only under high phenol concentrations. Low phenol inhibited Thrift root length, as is the case with Balckbutt oats, although high phenol had no significant impact on Thrift. While shoot length of Blackbutt oats is not significantly affected by increasing soil compaction, it is negatively impacted at the increased phenol concentrations in the untreated soils indicating an interaction effect with compaction. This is the first study that examines the impact of soil contamination on oats. The oat variety tested had known drought tolerance and hardiness indicating an ability to withstand compaction, and which may explain those characteristics. Thrift was most resistant to contamination which is consistent with its previously reported tolerance of pollutants. Implications of the study are that Blackbutt oats represent a potential candidate species for land rehabilitation under high compaction conditions such as at degraded soil sites at decommissioned mining operations, polluted industrial sites, or degraded (compacted) agricultural land.Polymer flooding is an enhanced oil recovery technique to extract the large portion of leftover subsurface oil following conventional extraction methods. In the flooding process, a long-chain polymer, such as partially hydrolyzed polyacrylamide (HPAM), is added to the displacing fluid to increase the mobility and extraction of the oil phase. BGB324 Nevertheless, the challenge of managing produced water from polymer flooding operations is high because residual HPAM results in significantly high viscosity and organic content in the stream. Commonly used methods for produced water treatment, such as gravity settling and flotation, cannot be applied to obtain a purified stream efficiently, while innovative techniques are not yet feasible in practical operations. In this work, a simple method of polymer precipitation prompted by divalent ions is evaluated, optimized, and compared to membrane ultrafiltration. The physico-chemical properties of the HPAM are investigated and polymer precipitation tests are conducted by varying the main operational parameters, including pH, salinity, temperature, calcium and/or magnesium concentration, and polymer concentration. Response surface developed by central composite design method is used to optimize the process and identify the correct dosage of divalent cations coagulants and pH, the two main factors promoting HPAM separation. The removal of HPAM is well-described and maximized (>85%) by the model, which is also validated on three synthetic samples representing real wastewaters from polymer flooding applications. Optimized ultrafiltration, using ceramic membranes with surface pore size of 15 kDa, also shows the ability to remove HPAM effectively from water, but the precipitation method seems to be more versatile and easier to apply. The two processes, precipitation and ultrafiltration, may potentially be used in sequence as they complement each other in several ways.The field-scale decentralized wastewater treatment system (DWTS) was developed with an anaerobic baffled reactor (ABR) and a newly configured hybrid constructed wetland (HCW) vegetated with Typha angustifolia and Canna indica to treat 42 kLd of domestic wastewater. Biorack baffled constructed wetland (BBCW) and baffled vertical flow constructed wetland (BVFCW) were used in the first and second stage of HCW respectively. DWTS was assessed for its efficiency to remove COD, BOD and TKN under high (varying flow and varying COD) and moderate (constant flow and varying COD) dynamic loading conditions. The tracer study and pertinent computation showed the good performance of DWTS in its hydraulic efficiency. COD of raw wastewater was the treatment-limiting step in ABR. link2 BBCW sustained larger fluctuations in loading rates [hydraulic (0.43-10.29 m3/m2.d) and organic (0.08-2.30 kgCOD/m2.d)]. The draining (unsaturated) conditions enhanced COD and BOD removal in BVFCW. DWTS was found to be efficient for the average removal of COD (70-90%) and TKN (40-65%). HCW contributed 50-60% and 70-80% to COD and TKN removal respectively. The quantification of impacts on treatment efficiency and sustainability of DWTS was demonstrated at field-scale under high and moderate dynamic conditions.The volume of municipal solid waste (MSW) inputs is rapidly increasing with a growing human population, and its composition is changing due an increased diversity of materials being deposited. There is an associated increase in leachate, a common toxic byproduct of MSW facilities that must be collected and treated prior to its release into the environment. There is growing interest in plant-based methods that are economical and efficient for leachate toxicity assessment such as biological tests that use indicator species. link3 In the present study, the tolerance thresholds of two herbaceous species, Sinapis alba L. (mustard) and Triticum aestivum L. (wheat) to increasing shares of leachate sourced from an MSW facility in the Czech Republic were assessed through a variety of physiological parameters. Soil-based biotests showed a stimulation in the shoot biomass, leaf expansion, primary root elongation and carbon assimilation rate of the selected plant species to leachate concentrations between 20 and 50 %. Higher leachate concentrations led to reductions in most physiological parameters, especially the elongation of seedling roots when growth solutions with >50 % leachate were applied. While S. alba was more sensitive to increasing proportions of leachate in terms of growth parameters of the shoot tissues, photosystem II efficiency and chlorophyll pigment concentrations were more responsive in T. aestivum, indicating species-dependent differences. The present biotests provide further support for the use of both Sinapis alba L and Triticum aestivum L. as indicator species of phytotoxicity.In this work, the iron-containing smectite nontronite (NNT) was artificially prepared by hydrothermal process and used as a heterogeneous catalyst to activate bisulfite (BS) for degradation of tetracycline (TC). Two NNT samples with different iron content (NNT1 and NNT2) were characterized by XRD, FTIR, XPS and SEM-EDS analysis. Under dark condition, the TC removal rates of NNT1/BS and NNT2/BS reached about 91.7% and 95.5% respectively at 60 min. Due to the heterogeneous catalysis of structural Fe(III), the NNT catalysts showed great catalytic activity and low iron leaching at the pH range 3.0-7.5. In addition, NNT particles were also stable and reusable in activating BS for TC removal. According to the EPR and radical quenching experiments, it could be proved that the precursor radical •SO3- was first generated in NNT/BS system, then •SO4- and •OH were the active species that played a role in TC degradation. The synthetic NNT clay is a promising Fe-based catalyst for treatment of TC wastewater thanks to its high activity, good stability and effective reusability.Landfilling is the most common option for solid waste disposal worldwide. Landfill sites can emit significant quantities of greenhouse gases (GHGs; e.g., methane, carbon dioxide, and nitrous oxide) and release toxic and odorous compounds (e.g., sulfides). Due to the complex composition and characteristics of landfill surface gas emissions, the quantification and control of landfill emissions are challenging. This review attempts to comprehensively understand landfill emission quantification and control options by primarily focusing on GHGs and odor compounds. Landfill emission quantification was highlighted by combining different emissions monitoring approaches to improve the quality of landfill emission data. Also, landfill emission control requires a specific approach that targets emission compounds or a systematic approach that reduces overall emissions by combining different control methods since the diverse factors dominate the emissions of various compounds and their transformation. This integrated knowledge of emission quantification and control options for GHGs and odor compounds is beneficial for establishing field monitoring campaigns and incorporating mitigation strategies to quantify and control multiple landfill emissions.The kinetic, isotherm, and thermodynamics of adsorptive removal of fluoride from the real-life groundwater was evaluated to assess the applicability of a green adsorbent, aluminum/olivine composite (AOC). The isotherm and kinetics were demonstrated by the Freundlich and Elovich model indicating significant surface heterogeneity of AOC in favouring the fluoride sorption. The fluoride removal efficiency of AOC was achieved as 87.5% after 240 min of contact time. The diffusion kinetic model exhibited that both the intra-particle and film diffusion together control the rate-limiting step of fluoride adsorption. A negative value of ΔG0 (-19.919 kJ/mol) at 303 K confirmed the spontaneous adsorption reaction of fluoride, and its endothermic nature was supported by the negative value of ΔH0 (39.504 kJ/mol). A novel framework for a predictive model by artificial neural network (ANN), and support vector machine (SVM) considering the real and synthetic fluoride-containing water was developed to assess the efficiency of adsorbent under different scenarios. ANN model was observed to be statistically significant (RMSE 1.0955 and R2 0.9982) and the proposed method may be instrumental in a similar area for benchmarking the synthetic and real-life samples. The low desorption potential of the spent adsorbent exhibited safe disposal of sludge and the secondary-pollutant-free treated water by the efficient and green adsorbent AOC enhanced the field-scale applicability of the green technology.Integrated pest management and outdoor water conservation comprise key practices encouraged by nonformal educators who work with the public to address significant issues related to water quality and availability. Disconnects among diverse audiences and educational programs pose challenges in achieving the goals of these types of programs. To discern a potential nonformal educational programming strategy, we conducted audience segmentation research incorporating residential environmental landscape best management practices and compared resulting subgroups' characteristics. We explored this paradigm through the context of Extension education and used a nationally-distributed electronic survey instrument to measure well-being and landscape management perceptions and practices in the United States. We collected 2601 complete survey responses and employed cluster analysis to divide the respondents into homogenous subgroups, followed by analysis of variance and chi-square analyses to identify differences among the subgroups.