Optical paying off throughout cardiac image resolution The comparative research

From Stairways
Jump to navigation Jump to search

Carbonate and organic bound Pb in rhizosphere soil were two major Pb species that influenced the accumulation of Pb in rice. Moreover, content of total Pb, clay and SOM performed well in predicting the Pb content in grain, both for pot and field samples. Above all, our predicting model worked well in evaluating Pb accumulation in rice grain among low polluted paddy farmland (Total Pb less then 300 mg/kg).Pesticides may alter soil microbial community structure or diversity, but their impact on microbial co-occurrence patterns remains unclear. Here, the effect of the widely used neonicotinoid insecticide thiamethoxam on the bacterial community in five arable soils was deciphered using the 16S rRNA gene amplicon sequencing technique. The degradation half-life of thiamethoxam in nonsterilized soils was significantly lower than that in sterilized soils, suggesting a considerable contribution from biodegradation. Soil bacterial community diversity diminished in high concentration thiamethoxam treatment and its impact varied with treatment concentration and soil type. Bacterial co-occurrence network complexity significantly decreased after exposure to thiamethoxam. Under thiamethoxam stress, the relative changes in bacterial co-occurrence networks were closely related (the majority of p-values 0.05). Additionally, three bacterial genera, Sphingomonas, Streptomyces, and Catenulispora, were identified to be relevant to the degradation of thiamethoxam in soils. This finding deciphers the succession of the bacterial community under thiamethoxam stress across multiple soils, and emphasizes the potential role of physicochemical properties in regulating the ecotoxicological effect of pesticides on the soil microbiome.Polyethylene (PE) is the most abundant non-degradable plastic waste, posing a constant and serious threat to the whole ecosystem. In the present study, the fungal community of plastic wastes contaminating a landfill soil has been studied. After 6 months of enrichment, 95 fungi were isolated, mostly belonging to the Ascomycota phylum. They were screened under in vitro condition most of fungi (97%) were capable of growing in the presence of PE powder (5-10 g L-1) as sole carbon source. Fusarium strains better tolerated high concentration of PE. Up to 13 strains were chosen for further degradation trails, where the process was monitored by respirometry tests and by observing changes in PE chemical and physical structure by FTIR analysis and SEM images. Major results were observed for Fusarium oxysporum, Fusarium falciforme and Purpureocillum lilacinum, as they caused strong oxidation phenomena and changes in the PE film morphology. Results suggested that the initial oxidation mechanisms targeted first the methyl terminal groups. Changes in the infrared spectra were strongly strain-dependent, denoting the activation of different degradation pathways. Through the SEM analysis, the actual damages provoked by fungi were observed, including swellings, pits and furrows, bumps and partial exfoliations. Considering the rising concern about plastic disposal worldwide, the ability of these fungi to colonize PE and utilize it as carbon source is of great interest, as no pretreatments and pro-oxidant stimulants were needed.Water pollution is one of the main challenges and water crises, which has caused the existing water resources to be unusable due to contamination. To understand the determinants of the distribution and abundance of antibiotic resistance genes (ARGs), we examined the distribution of 22 ARGs in relation to habitat type, heavy metal pollution and antibiotics concentration across six lakes and wetlands of Iran. The concentration of 13 heavy metals was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) by Thermo Electron Corporation, and five antibiotics by online enrichment and triple-quadrupole LC-MS/MS were investigated. We further performed a global meta-analysis to evaluate the distribution of ARGs across global lakes compared with our studied lakes. While habitat type effect was negligible, we found a strong correlation between waste discharge into the lakes and the abundance of ARGs. The ARGs abundance showed stronger correlation with the concentration of heavy metals, such as Vanadium, than with that of antibiotics. Our meta-analysis also confirmed that overuse of antibiotics and discharge of heavy metals in the studied lakes. These data point to an increase in the distribution of ARGs among bacteria and their increasing resistance to various antibiotics, implying the susceptibility of aquatic environment to industrial pollution.Owing to its physicochemical similarity to strontium (Sr), calcium (Ca) was tested as a key component of a soil washing solution for Sr-contaminated soil collected near a nuclear power plant. A four-factor, three-level Box-Behnken experimental design combined with response surface modeling was employed to determine the optimal Sr washing condition for Ca-based solution. The Ca concentration (0.1-1 M), liquid-to-soil ratio (5-20), washing time (0.5-2 h), and pH (2.0-7.0) were tested as the independent variables. From the Box-Behnken design, 27 sets of experimental conditions were selected, and a second-order polynomial regression equation was derived. The significance of the independent parameters and interactions was tested by analysis of variance. Ca concentration was found to be the most influential factor. To determine whether the four variables were independent, three-dimensional (3D) response surface plots were established. The optimal washing condition was determined to be as follows 1 M Ca, L/S ratio of 20, 1 h washing, and pH = 2. Under this condition, the highest Sr removal efficiency (68.2%) was achieved on a soil contaminated with 90.1 mg/kg of Sr. Results from five-step sequential extraction before and after washing showed that 84.0% and 82.9% of exchangeable and carbonate-bound Sr were released, respectively. In addition, more tightly bound Sr, such as Fe/Mn oxides-bound and organic matter-bound Sr, were also removed (86.2% and 64.5% removal, respectively).Due to the unreasonable use and discharge of the aquaculture industry, over standard of the antibiotics has been frequent in different types of water environments, causing adverse effects on aquatic organisms. Lycopene (LYC) is an esculent carotenoid, which is considered to be a strong antioxidant. This study was designed to explore the therapeutic effect of LYC on antibiotic (sulfamethoxazole (SMZ)) induced intestinal injury in grass carp Ctenopharyngodon idella. The 120 carps (the control, LYC, SMZ, and co-administration groups) were treated for 30 days. We found that treatment with LYC significantly suppressed SMZ-induced intestinal epithelial cell damage and tight junction protein destruction through histopathological observation, transmission electron microscopy and detection of related genes (Claudin-1/3/4, Occludin and zonula occludens (ZO)-1/2). Furthermore, LYC mitigated SMZ-induced dysregulation of oxidative stress markers, including elevated malondialdehyde (MDA) levels, and consumed super oxide dimutese (SOD), catalase (CAT) activities and glutathione (GSH) content. In the same treatment, LYC reduced inflammation and apoptosis by a detectable change in pro-inflammatory factors (tumor necrosis factor-alpha (TNF-β), interleukin (IL)-1β, IL-6 and IL-8), anti-inflammatory factors (transforming growth factor-beta (TGF-β) and IL-10) and pro-apoptosis related genes (p53, p53 upregulated modulator of apoptosis (PUMA), Bax/Bcl-2 ratio, caspase-3/9). In addition, activation of autophagy (as indicated by increased autophagy-related genes through AMPK/ATK/MTOR signaling pathway) under the stress of SMZ was also dropped back to the original levels by LYC co-administration. Collectively, our findings identified that LYC can serve as a protectant agent against SMZ-induced intestinal injury.Most river sediments are contaminated with organic and inorganic pollutants and cause significant environmental damage and health risks. This research is evaluated an in-situ sediment remediation method using ultrasound and ozone nanobubbles to remove organic and inorganic chemicals in contaminated sediments. Contaminated sediment is prepared by mixing synthetic fine sediment with an organic (p-terphenyl) and an inorganic chemical (chromium). The prepared contaminated sediment is treated with ultrasound and ozone nanobubbles under different operating conditions. read more For the samples with the maximum initial concentration of 4211 mg/kg Cr and 1875 mg/kg p-terphenyl, average removal efficiencies are 71% and 60%, respectively, with 240 min of sonication with 2-min pulses, whereas 97.5% and 91.5% removal efficiencies are obtained for the same, respectively, as a single contaminant in the sediment. For the same maximum concentrations, the highest removal of p-terphenyl is 82.7% with 127.2 J/ml high energy density, and for Cr, it is 77.1% using the highest number of the treatment cycle and ozone usage with 78.75/ml energy density. The Cr highest removal efficiency of 87.2% is recorded with the reduced initial concentration of 1227 mg/kg with the highest treatment cycles. The Cr removal efficiency depends on the availability of oxidizing agents and the number of washing cycles of sediments, whereas P-terphenyl degradation is most likely influenced by the combined effects of oxidation and ultrasound-assisted pyrolysis and combustion of organics.Piscivorous avian species may be affected by mercury (Hg) which tends to accumulate in aquatic environments and biomagnifies across the food webs. One of such species is the black stork, whose population increase recently slowed down due to unknown reasons. At the same time Hg contamination and its effects were almost unaudited for this species, so it may have exerted deleterious effects on the population and an evaluation is necessary. This is the first study of this species concerning Hg contamination. Thus, Hg concentrations were investigated in the down of black stork chicks (N = 90) from breeding locations in central and southern Poland (Europe) between 2015 and 2017. As well as Hg levels, morphometric parameters and age were evaluated. Mean Hg concentrations reached 0.7 μg/g d.w. and differed significantly between years, from the lowest value noted in 2017 (mean 0.5 μg/g), through 2016 (0.7 μg/g), to the highest one in 2015 (0.9 μg/g), and between nest locations where higher Hg levels were generally found in northern parts of the study area. Hg concentrations were also unrelated to morphometric parameters. Contrarily, morphometric parameters revealed high correlations between themselves, which was confirmed by the cluster analysis (revealing only two clusters) and principal component analysis (the first PC explained 96.8% of the variance). Hg levels in the down of black storks were rather low with the fluctuation between years and nest locations probably caused by parental exposure during wintering, migration, pre-breeding season and recent exposure through food provided by parents. Such low Hg concentrations seemed not to affect the population from the region studied.Extensive fish production in earthen ponds is a common aquaculture practice, which requires draining of the ponds for fish harvesting. Despite their value for biodiversity and water retention, the impact of fish ponds on the receiving streams as regards fine sediment and nutrient pollution remains controversial. This holds particularly true for streams with endangered freshwater pearl mussels, requiring a highly permeable streambed with low fine sediment content for successful juvenile development. This study quantified the amount of fine sediment, suspended solids and nutrients delivered to pearl mussel streams in relation to the pond characteristics, distance to the receiving stream and applications of measures to prevent the input of fines. Comparing fine sediment deposition above and downstream of the pond inlets after 21 pond drainage operations, as well as continuous measurements of the turbidity for 12 operations revealed varying effects of pond fishing on the receiving streams. Average fine sediment deposition was increased by nearly six-fold compared to upstream and maximum turbidity values for single drainage operations exceeded 460 NTU.