Place of radiotherapy inside the treating cutaneous carcinomas

From Stairways
Jump to navigation Jump to search

A thin filament stimulated by Ca2+ to combine with myosin is the structural basis to achieve filament sliding and muscle contraction. Though a large variety of artificial materials has been developed by mimicking muscle, the on-demand combination of the actin filament and myosin has never been precisely reproduced in polymeric systems. Herein, we show that both the combination process and the combined structure of actin filament and myosin have been mimicked to construct synergistic covalent and supramolecular polymers (CSPs). Specifically, photoirradiation as a stimulus induces the independently formed covalent polymers (CPs) and supramolecular polymers (SPs) to interact with each other through activated quadruple H-bonding. The resultant CSPs possess a unique network structure which not only facilitates the synergistic effect of CPs and SPs to afford stiff, strong, yet tough materials but also provides efficient pathways to dissipate energy with the damping capacity of the representative material being higher than 95%. Furthermore, muscle functions, for example, by becoming stiff during contraction and self-growth by training, are imitated well in our system via in situ phototriggered formation of CSP in the solid state. We hope that the fundamental understanding gained from this work will promote the development of synergistic CSP systems with emergent functions and applications by mimicking the principle of muscle movements.Radiotherapy and immunotherapy are two key treatments for cancer. There is growing evidence that they are also synergistic, and combination treatments are being studied extensively in the clinical setting. In addition, there is emerging evidence that nanotechnology-enabled therapeutics can potentiate both radiotherapy and immunotherapy, in turn improving both treatments. This is an exciting new area of interdisciplinary science and has significant potential for major clinical impact. Some of the approaches in this area have already reached the clinical stage. In this review, we will discuss recent advances in the interface between radiotherapy, immunotherapy, and nanomedicine. We plan to review the many approaches to combine these three fields for cancer treatment.Synergistic catalysis, a type of plural catalysis which utilizes at least two different catalysts to enable a reaction between two separately activated substrates, has unlocked a plethora of previously unattainable transformations and novel chemical reactivity. Despite the appreciable utility of synergistic catalysis, specific examples involving two transition metals have been limited, as ensuring a judicious choice of reaction parameters to prevent deactivation of catalysts, undesirable monocatalytic event(s) leading to side products, or premature termination and other potentially troublesome outcomes present a formidable challenge. Excluding those driven by photocatalytic mechanisms, this review will highlight the reported examples of reactions that make use of two simultaneous catalytic cycles driven by two transition metal catalysts.Silicon has been considered as the most promising anode candidate for next-generation lithium-ion batteries. However, the fast capacity decay caused by huge volume expansion and low electronic conductivity limit the electrochemical performance. Herein, atomic distributed, air-stable, layer-by-layer-assembled Si/C (L-Si/C) is designed and in situ constructed from commercial micron-sized layered CaSi2 alloy with the greenhouse gas CO2. NVP-BSK805 research buy The inner structure of Si as well as the content and graphitization of C can be regulated by simply adjusting the reaction conditions. The rationally designed layered structure can enhance electronic conductivity and mitigate volume change without disrupting the carbon layer or destroying the solid electrolyte interface. Moreover, the single-layer Si and C can enhance lithium-ion transport in active materials. With these advantages, L-Si/C anode delivers an 82.85% capacity retention even after 3200 cycles and superior rate performance. The battery-capacitance dual-model mechanism is certified via quantitative kinetics measurement. Besides, the self-standing architecture is designed via assembling L-Si/C and MXene. Lithiophilic L-Si/C can guide homogeneous Li deposition with alleviated volume change. With the MXene/L-Si/C host for lithium-metal batteries, an ultralong life span up to 500 h in a carbonate-based electrolyte is achieved. A full cell with a high-energy 5 V LiNi0.5Mn1.5O4 cathode is constructed to verify the practicality of L-Si/C and MXene/L-Si/C. The rational design of a special layer structure may propose a strategy for other materials and energy storage systems.While lithium phosphides have been investigated intensively, very little is known about the corresponding sodium-based phosphides. Here, we report on the first ternary Na-Ta-P compound Na7TaP4, which is easily accessible via ball milling of the elements and subsequent annealing. The single crystal X-ray structure determination [monoclinic symmetry; space group P21/c; and lattice parameters a = 11.5604(4), b = 8.1530(3), c = 11.5450(5) Å, and β = 101.602(3)°] reveals [TaP4]7- tetrahedra, which are surrounded by Na+ counterions. Na7TaP4 crystallizes in a new structure type. The structure can be described as a strongly distorted hexagonal close packing of P atoms, in which the Ta atoms are located in tetrahedral voids, and Na atoms occupy all octahedral voids and additionally 3/8 of the tetrahedral voids. The possibility to increase the ion conductivity by changing the number of charge carriers through aliovalent substitution in compounds containing [SiP4]8- and [AlP4]9- is considered. The 31P and 23Na MAS NMR as well as the Raman spectra are in accordance with the structure model, and band structure calculations predict a direct band gap of 2.9 eV.Alzheimer's disease (AD) is a progressive neurological disorder and is the most common type of dementia. Amyloid β (Aβ) plaques play an important role in the pathophysiology of AD. However, the existing therapeutic strategies are not effective for the management of both Aβ-induced neurotoxicity and Aβ fibrils clearance in biological conditions. Herein, we have developed lipoprotein conjugated polymeric nanoparticles that can boost the clearance rate of Aβ fibrils and mitigate Aβ-induced neurotoxicity in AD rat. These nanoparticles were designed by loading donepezil in an amphiphilic polymer with a lipoprotein (ApoE3) integrated over the surface. Polymeric nanoparticles were prepared by a nanoprecipitation method, and ApoE3 was conjugated to the polymer layer by polysorbate 80. In the present study, we intended to examine the protective effect of ApoE3 nanoparticles against Aβ-induced neurotoxicity both in vitro and in vivo to evaluate if these can reduce the Aβ fibril formation and cognitive and behavioral deficits observed in AD induced rats.