Placement Efficiency of an SubArcSecond MicroDrive Rotary System

From Stairways
Jump to navigation Jump to search

We investigate a generic two-field Cahn-Hilliard model with variational and nonvariational coupling. It describes, for instance, passive and active ternary mixtures, respectively. Already a linear stability analysis of the homogeneous mixed state shows that activity not only allows for the usual large-scale stationary (Cahn-Hilliard) instability of the well-known passive case but also for small-scale stationary (Turing) and large-scale oscillatory (Hopf) instabilities. In consequence of the Turing instability, activity may completely suppress the usual coarsening dynamics. In a fully nonlinear analysis, we first briefly discuss the passive case before focusing on the active case. Bifurcation diagrams and selected direct time simulations are presented that allow us to establish that nonvariational coupling (i) can partially or completely suppress coarsening and (ii) may lead to the emergence of drifting and oscillatory states. Throughout, we emphasize the relevance of conservation laws and related symmetries for the encountered intricate bifurcation behavior.We study the possibility of achieving the Carnot efficiency in a finite-power underdamped Brownian Carnot cycle. Recently, it was reported that the Carnot efficiency is achievable in a general class of finite-power Carnot cycles in the vanishing limit of the relaxation times. Thus, it may be interesting to clarify how the efficiency and power depend on the relaxation times by using a specific model. By evaluating the heat-leakage effect intrinsic in the underdamped dynamics with the instantaneous adiabatic processes, we demonstrate that the compatibility of the Carnot efficiency and finite power is achieved in the vanishing limit of the relaxation times in the small temperature-difference regime. Furthermore, we show that this result is consistent with a trade-off relation between power and efficiency by explicitly deriving the relation of our cycle in terms of the relaxation times.More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to analyze statistical properties of jammed granular ensembles to test Edwards theory. Identical spheres packed in a nearly two-dimensional geometrical confinement were studied in experiments and numerical simulations. https://www.selleckchem.com/products/PP242.html When tapped, the system evolves toward a ground state, but due to incompatible domain structures it gets trapped. Analytical calculations reproduce relatively well our simulation results, which allows us to test Edwards theory on a coupled system of two subsystems with different properties. We find that the joint system can only be described by the Edwards theory if considered as a single system due to the constraints in the stresses. The results show counterintuitive effects as in the coupled system the change in the order parameter is opposite to what is expected from the change in the compactivity.We predict the emergence of large-scale polar order and spontaneous directional flows in a class of self-propelled autonomous particles that interact via passive repulsion between off-center sites. The coupling of active motion with the passive torque acting about the particle centers results in hybrid active-passive interactions responsible for a macroscopic phase transition from an isotropic state to a polar-aligned state in systems of particles with front interaction sites. We employ a continuum kinetic theory to explain that the emergence of long-ranged orientational order, which occurs in unbounded domains at finite densities, can be externally activated independently of the self-propulsion mechanism and drives a macroscopic particle flow in a direction selected by symmetry breaking.We conjecture that in chaotic quantum systems with escape, the intensity statistics for resonance states universally follows an exponential distribution. This requires a scaling by the multifractal mean intensity, which depends on the system and the decay rate of the resonance state. We numerically support the conjecture by studying the phase-space Husimi function and the position representation of resonance states of the chaotic standard map, the baker map, and a random matrix model, each with partial escape.In systems with dynamical transitions, criticality is usually defined by the behavior of suitable individual variables of the system. In the case of time series, the usual procedure involves the analysis of the statistical properties of the selected variable as a function of a control parameter in both the time and frequency domains. An interesting question, however, is how to identify criticality when multiple simultaneous signals are required to provide a reliable representation of the system, especially when the signals exhibit different dynamics and do not individually display the characteristic signs of criticality. In that situation, a technique that analyzes the collective behavior of the signals is necessary. In this work we show that the eigenvalues and eigenvectors obtained from principal components analysis (PCA) can be used as a way to identify collective criticality. To do this, we construct a multilayer Ising model comprised of coupled two-dimensional Ising lattices that have distinct critical temperatures when isolated. We apply PCA to the collection of magnetization signals for a range of global temperatures and study the resulting eigenvalues. We find that there exists a single global temperature at which the eigenvalue spectrum follows a power law, and identify this as an indicator of "multicriticality" for the system. We then apply the technique to electroencephalographic recordings of brain activity, as this is a prime example of multiple signals with distinct individual dynamics. The analysis reveals a power-law eigenspectrum, adding further evidence to the brain criticality hypothesis. We also show that the eigenvectors can be used to distinguish the recordings in the resting state from those during a cognitive task, and that there is important information contained in all eigenvectors, not just the first few dominant ones, establishing that PCA has great utility beyond dimensionality reduction.Many self-propelled objects are large enough to exhibit inertial effects but still suffer from environmental fluctuations. The corresponding basic equations of motion are governed by active Langevin dynamics, which involve inertia, friction, and stochastic noise for both the translational and orientational degrees of freedom coupled via the self-propulsion along the particle orientation. In this paper, we generalize the active Langevin model to time-dependent parameters and explicitly discuss the effect of time-dependent inertia for achiral and chiral particles. Realizations of this situation are manifold, ranging from minirockets (which are self-propelled by burning their own mass), to dust particles in plasma (which lose mass by evaporating material), to walkers with expiring activity. Here we present analytical solutions for several dynamical correlation functions, such as mean-square displacement and orientational and velocity autocorrelation functions. If the parameters exhibit a slow power law in time, we obtain anomalous superdiffusion with a nontrivial dynamical exponent. Finally, we constitute the "Langevin rocket" model by including orientational fluctuations in the traditional Tsiolkovsky rocket equation. We calculate the mean reach of the Langevin rocket and discuss different mass ejection strategies to maximize it. Our results can be tested in experiments on macroscopic robotic or living particles or in self-propelled mesoscopic objects moving in media of low viscosity, such as complex plasma.Among various algorithms of multifractal analysis (MFA) for complex networks, the sandbox MFA algorithm behaves with the best computational efficiency. However, the existing sandbox algorithm is still computationally expensive for MFA of large-scale networks with tens of millions of nodes. It is also not clear whether MFA results can be improved by a largely increased size of a theoretical network. To tackle these challenges, a computationally efficient sandbox algorithm (CESA) is presented in this paper for MFA of large-scale networks. Distinct from the existing sandbox algorithm that uses the shortest-path distance matrix to obtain the required information for MFA of networks, our CESA employs the compressed sparse row format of the adjacency matrix and the breadth-first search technique to directly search the neighbor nodes of each layer of center nodes, and then to retrieve the required information. A theoretical analysis reveals that the CESA reduces the time complexity of the existing sandbox algorithm from cubic to quadratic, and also improves the space complexity from quadratic to linear. Then the CESA is demonstrated to be effective, efficient, and feasible through the MFA results of (u,v)-flower model networks from the fifth to the 12th generations. It enables us to study the multifractality of networks of the size of about 11 million nodes with a normal desktop computer. Furthermore, we have also found that increasing the size of (u,v)-flower model network does improve the accuracy of MFA results. Finally, our CESA is applied to a few typical real-world networks of large scale.We consider the problem of the absence of backscattering in the transport of Manakov solitons on a line. The concept of transparent boundary conditions is used for modeling the reflectionless propagation of Manakov vector solitons in a one-dimensional domain. Artificial boundary conditions that ensure the absence of backscattering are derived and their numerical implementation is demonstrated.Reduction of collective dynamics of large heterogeneous populations to low-dimensional mean-field models is an important task of modern theoretical neuroscience. Such models can be derived from microscopic equations, for example with the help of Ott-Antonsen theory. An often used assumption of the Lorentzian distribution of the unit parameters makes the reduction especially efficient. However, the Lorentzian distribution is often implausible as having undefined moments, and the collective behavior of populations with other distributions needs to be studied. In the present Letter we propose a method which allows efficient reduction for an arbitrary distribution and show how it performs for the Gaussian distribution. We show that a reduced system for several macroscopic complex variables provides an accurate description of a population of thousands of neurons. Using this reduction technique we demonstrate that the population dynamics depends significantly on the form of its parameter distribution. In particular, the dynamics of populations with Lorentzian and Gaussian distributions with the same center and width differ drastically.We determine the asymptotic behavior of the entropy of full coverings of a L×M square lattice by rods of size k×1 and 1×k, in the limit of large k. We show that full coverage is possible only if at least one of L and M is a multiple of k, and that all allowed configurations can be reached from a standard configuration of all rods being parallel, using only basic flip moves that replace a k×k square of parallel horizontal rods by vertical rods, and vice versa. In the limit of large k, we show that the entropy per site S_2(k) tends to Ak^-2lnk, with A=1. We conjecture, based on a perturbative series expansion, that this large-k behavior of entropy per site is superuniversal and continues to hold on all d-dimensional hypercubic lattices, with d≥2.