Plantar fascia transfers to regain knee flexion

From Stairways
Jump to navigation Jump to search

β2-Agonists that bind to plasmalemmal β2-adrenoceptors causing cAMP accumulation are widely used as bronchodilators in chronic respiratory diseases. Here, we designed and synthesized a group of 8-hydroxyquinolin-2(1H)-one analogues and studied their β2-agonistic activities with a cellular cAMP assay. Compounds B05 and C08 were identified as potent (EC50 less then 20 pM) and selective β2-agonists among the compounds tested. They behaved as partial β2-agonists in non-overexpressed HEK293 cells, and possessed rapid smooth muscle relaxant actions and long duration of action in isolated guinea pig tracheal strip preparations. In summary, B05 and C08 are β2-agonists with potential applicability in chronic respiratory diseases.The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 μM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 μM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.The glycosylphosphatidylinositol-anchored transmembrane glycoprotein CD160 (cluster of differentiation 160) is a member of the immunoglobulin superfamily. Four isoforms, which differ by the presence or absence of an immunoglobulin-like domain and the mode of anchoring in the cell membrane, have been identified. CD160 has a significant impact on the proper functioning of the immune system by activating natural killer cells and inhibiting T cells. CD160 is a natural ligand for herpes virus entry mediator (HVEM), a member of the tumor necrosis factor superfamily. The CD160-HVEM complex is a rare example of direct interaction between the two different superfamilies. ABT-199 concentration The interaction of these two proteins leads to the inhibition of CD4+ T cells which, in consequence, leads to the inhibition of the correct response of the immune system. Available research articles indicate that CD160 plays a role in various types of cancer, chronic viral diseases, malaria, paroxysmal nocturnal hemoglobinuria, atherosclerosis, autoimmune diseases, skin inflammation, acute liver damage and retinal vascular disease. We present here an overview of the CD160 protein, the general characteristics of the receptor and its isoforms, details of structural studies of CD160 and the CD160-HVEM complex, as well as a description of the role of this protein in selected human diseases.Oleic acid is a pharmaceutical excipient and has been widely used in many dosage forms. It remains unclear in terms of the fatty acids (FAs) profile. In this study, a sensitive and direct method based on high-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) was developed to study the compositions of oleic acid. The chromatographic conditions were optimized to achieve good separation and high sensitivity. The components of oleic acid were identified by ion trap/time of flight mass spectrometry (MS-IT-TOF). Twenty-seven FAs were identified based on the exact mass-to-charge ratio and fragments, among which 13 FAs were confirmed with the reference standards. Nine FAs in the oleic acid samples including oleic acid, linolenic acid, myristic acid, palmitoleic acid, linoleic acid, palmitic acid, stearic acid, arachidic acid and behenic acid were simultaneously determined by the developed HPLC-CAD, which showed good linearity with r2>0.999. The limit of detection (LOD) and limit of quantification (LOQ) of 9 FAs were 0.006-0.1 μg mL-1 and 0.032-0.22 μg mL-1, respectively. The components with concentration level not less than 0.03 % (referring to the sample concentration of 1.0 mg mL-1) can be quantified. The mean recovery values of 9 FAs ranged from 96.5%-103.6% at three concentration levels of 80 %, 100 % and 120 %. The repeatability and intermediate precision were less than 5.0 % for oleic acid and components with concentration levels more than 0.05 %. In contrast to the conventional pre-column derivatization gas chromatography (GC), HPLC-CAD could unbiasedly and directly detect more components, especially the FAs with long carbon chains. Overall, the developed novel HPLC-CAD method can ameliorate the deficiency of the indirect GC method recorded in current pharmacopeias, thus having great potential for the comprehensive understanding and quality control of oleic acid.Metabolomics is a rapid and sensitive tool for the detection of dynamic metabolic compositions in the study of systemic metabolic consequences. However, it is also susceptible to a tiny variation of pre-analytical handling procedures. To provide reproducible results, specific knowledge on metabolites perturbance along with different freeze-thaw cycles (FTCs) is needed for further metabolomics studies. In this paper, five FTCs of germinated Cassiae Semen (CS) were chosen as a case study to investigate the influence of FTC effect based on UHPLC-Q-Orbitrap-MS and NMR technologies. A total of 108 metabolites were relatively quantified by LC-MS and NMR analyses. Principal component analysis (PCA) showed that the first and second FTC samples are welly separated from the other groups; however, the extent of FTC-induced effects are smaller after the third cycle. Upon five consecutive FTCs, alterations which consisted of decreased stachyose, sucrose, norrubrofusarin-6-O-β-d-glucopyranoside, and quercetin 3-(3″-acetylgalactoside), as well as increased phenylalanine, leucine, isoleucine, methionine, phenylalanine, mannose, gluconic acid, and valine, could be observed.