Progression of a ThreeDimensional Bioartificial Shoulder Joint Embed Mimetic of Periprosthetic Combined Contamination
75 and 0.92 which were within the range suggested for precipitated amorphous calcium phosphate. Direct cell seeding and indirect cell culture studies (via incubation with microsphere degradation products) revealed hMSCs were able to grow and undergo osteogenic differentiation in vitro, confirming cytocompatibility of the formulations tested. However, the higher Mg content (24 mol%) porous microsphere showed the most potent osteogenic response and is therefore considered as a promising candidate for bone repair applications.This work focuses on the influence of different amounts (5, 10, 15, 20 and 25%, v/v) of solution of Aloe vera on the chemical structure and properties of sodium alginate/poly(vinyl alcohol) hydrogel films. The polymeric matrix was prepared following the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a cross-linking agent. First, the gel fractions of the modified hydrogels were determined and their swelling behavior in distilled water and phosphate-buffered saline (PBS) was tested. Subsequently, the following properties of the modified hydrogel materials were studied structural (FT-IR spectra analysis), morphological (SEM analysis) and mechanical (tensile strength, elongation at break and hardness). Moreover, a thermal analysis (TG/DTG and DSC) confirmed that the SA/PVA hydrogels containing Aloe vera exhibited slightly higher thermal stability than the unmodified hydrogels, which allows concluding that a rigid and thermally stable three-dimensional structure hadding and proliferation.Ultra-thin two-dimensional nanosheets have attracted increasing attention due to their great application prospects in nanomaterial science and biomedicine. Herein, we report the preparation of exfoliated raw and oxidized 4-layer Ti7O13 (O-Ti7O13) and their ability to produce reactive oxygen species (ROS). The results show that O-Ti7O13 nanosheets can effectively produce ROS induced by X-ray irradiation. The 4-layer nanosheets can quickly load doxorubicin (DOX) within 5 min with a high loading rate to obtain a novel nanodrug system through their electrostatic adsorption capacity, and they exhibit a sustained release behavior. In this way, chemotherapy, radiation therapy and photodynamic therapy effectively combine for cancer synergistic treatment. We evaluated the cytotoxicity, cellular uptake and intracellular location of the O-Ti7O13 nanosheet-based drug delivery system in A549 lung cancer cells. Our results show that the O-Ti7O13/DOX complex is more cytotoxic to A549 cells than free DOX since a low concentration of loaded DOX (10 μg/mL) with a low dose of X-rays can cause the complete apoptosis of tumor cells. This work reveals that the therapeutic effect of DOX-loaded O-Ti7O13 nanosheets is strongly dependent on their loading mode, and the effects of chemotherapy and photodynamic therapy are enhanced under X-ray irradiation, which allows O-Ti7O13 nanosheet use as a photo-activated drug carrier. This work provides a new strategy for preparing 2D metal oxide nanosheets toward biomedical applications.Combining the bio-therapeutics with chemotherapeutic drugs can assist in augmenting the therapeutic standards by increasing the efficacy and decreasing the toxicity. SAR7334 Hence, in the present investigation Docetaxel (DTX) loaded pH-sensitive SIRT1 shRNA complexed lipoplex (DTX-lipoplex) were developed and explored for their improved breast cancer potential. The DTX-lipoplex were prepared by solvent evaporation and rehydration method and were evaluated for various quality attributes (particle size, % entrapment efficiency, hemotoxicity, DNA stability efficiency etc.), in vitro drug release, cell culture assays, antitumor efficacy and in vivo toxicity. The DTX-lipoplex exhibited a size of ~200 nm and zeta-potential of ~20 mV with ~70% encapsulation. Through systematic in vitro and in vivo examinations, DTX-lipoplex showed ~3 fold higher DTX titre within the tumor cells thereby significantly reducing the tumor burden (~78%) when compared to the marketed non pH sensitive lipid transfection agent and clinical counterpart i.e. Taxotere®. Thus, to conclude it can be said that co-delivering DTX and SIRT1 shRNA in a single tumor-specific nano-platform can improve the therapeutic potential of current therapy.The application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO2-x) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO3)3·6H2O and different concentrations of NaOH (0.01 M, 6.00 M). The characteristics of these nanomorphologies are compared in terms of the crystallinity (XRD), grain size (TEM), surface area (BET), tendency to agglomerate, and the oxygen vacancy concentration ([VO••]) as reflected by the [Ce3+]/[Ce4+] ratio (XPS). The effects of these parameters on the potential cellular uptake are canvassed, suggesting that the nonpolarity of the 111 planes of NO and NR facilitate the preferential uptake of these nanomorphologies. These experimental variables then were normalized through the use of NC as a model substrate for the functionalization using gum arabic (GA) and collagen in order to assess their roles in enhancing redox activity. Both the unfunctionalized and functionalized NC were noncytotoxic in in vitro tests with Kuramochi ovarian cancer cells. However, the antioxidant behavior of the collagen-functionalized NC was superior to that of the unfunctionalized NC, which was superior to that of the controls. These results demonstrate that, while the intrinsic VO•• of CeO2-x enhance the destruction of reactive oxygen species (ROS), functionalization by gum arabic and collagen crosslinking as extrinsic additions to the system enhances ROS destruction to an even greater extent. The antioxidant behavior and potential to neutralize superoxide and hydroxyl radicals of these materials offers new potential for the improvement of nanoparticulate cancer therapies.