Psychometric Testing of an Registered nurse Residence Plan Stakeholder Examination Study

From Stairways
Jump to navigation Jump to search

Dairy cows are negatively affected by the introduction of bovine viral diarrhea virus (BVDV), and consequently, produce less milk. Existing literature on potential milk production losses is based on relatively outdated data and hardly evaluates milk production loss in relation to a new BVDV infection in a surveillance system. This study determined the annual and quarterly loss in milk production of BVDV introduction in 3,126 dairy herds participating in the Dutch BVDV-free program between 2007 and 2017. Among these herds, 640 were "breakdown-herds" that obtained and subsequently lost their BVDV-free status during the study period, and 2,486 herds obtained and retained their BVDV-free status during the study period. Milk yields before and after BVDV introduction were compared through annual and quarterly linear mixed models. The fixed variables for both models included herd type (breakdown-herd or free-herd), bovine viral diarrhea status (on an annual and quarterly basis), year, season, and a random herd effecs indicated that milk yield loss was greatest in the first quarter after BVDV introduction. Overall, BVDV introduction had a negative, but on average a relatively small, effect on milk yield for herds participating in the BVDV-free program. This study will enable dairy farmers and policymakers to have a clearer understanding of the quantitative milk production effect of BVDV on dairy farms in a control program.The objective of this study was to differentiate the effects of acute heat stress (HS) from those of decreased dry matter intake (DMI) during the prepartum period on metabolism, colostrum, and subsequent production of dairy cows. Holstein dairy cows (n = 30) with similar parity and body weight were randomly assigned to 1 of 3 treatments on 45 d before calving (1) cooled (CL, n = 10) conditions with ad libitum feed intake, (2) HS conditions with ad libitum feed intake (n = 10), and (3) pair-fed cooled (CLPF, n = 10) with reduced DMI similar to the HS group while housed under cooled conditions. The reduction in the amount of feed offered to the CLPF cows was calculated daily as the percentage decrease from the average DMI of HS cows relative to the CL cows. For CLPF and CL cows, barns provided shade, sprinklers, and fans, whereas the HS cows were provided only with shade. Muramyldipeptide Cows in all groups received individually the same total mixed ration. Cows were dried off 60 d before the expected calving. Cows in the HS group and, by design, the CLPF cows had reduced DMI (~20%) during the experiment. Heat stress decreased gestation length, first colostrum yield, and calf birth weight compared with CL and CLPF cows. Milk yield decreased 21% (5 kg) in the HS and 8% (2 kg) in CLPF cows, indicating that reduced feed intake during late gestation accounted for 60% of the total reduced milk yield. The CLPF cows exhibited an elevated NEFA concentration compared with the CL and HS cows. The HS cows had a greater mRNA abundance of HSP70 in the peripheral blood leukocytes at 21 d prepartum compared with the other groups. At calving, the mRNA abundance of HSP70 was greater in HS cows, followed by CLPF, compared with the CL cows. In conclusion, HS during the late gestation period caused metabolism and production differences, which were only partially attributed to reduced feed intake in dairy cows.Fresh unripened curd cheese has long been a well-known Eastern European artisanal dairy product; however, due to possible cross-contamination from manual production steps, high moisture content (50-60%), and metabolic activity of present lactic acid bacteria, the shelf life of curd cheese is short (10-20 d). Therefore, the aim of this study was to improve the shelf life of Eastern European acid-curd cheese by applying an antimicrobial protein-based (5%, wt/wt) edible coating. The bioactive edible coating was produced from liquid whey protein concentrate (a cheese production byproduct) and fortified with 0.3% (wt/wt, solution basis) Chinese cinnamon bark (Cinnamomum cassia) CO2 extract. The effect of coating on the cheese was evaluated within package-free (group 1) and additionally vacuum packaged (group 2) conditions to represent types of cheeses sold by small and big scale manufacturers. The cheese samples were examined over 31 d of storage for changes of microbiological (total bacterial count, lactic acid bishable fresh curd cheese, enhance its functional value, and contribute to a more sustainable production process.The objective of this prospective cohort study was to investigate the effect of bovine coronavirus (BCoV), bovine rotavirus (BRoV), and Cryptosporidiumparvum on dairy calf health and performance and to determine the prevalence of these pathogens. A total of 198 male dairy calves housed at a grain-fed veal facility were examined from June 11, 2018, to October 9, 2018. Calves were fed milk replacer twice daily and housed individually until weaning at 56 d. Once weaned, calves were moved into groups of 5 until they were moved to a finishing facility at 77 d. At the grain-fed veal facility, calves were scored for fecal consistency for the first 28 d and had fecal samples taken on arrival and at 7 and 14 d. Fecal samples were frozen and submitted to a commercial laboratory, where they were tested for BCoV, C.parvum, and 2 groups of BRoV group A (BRoV A) and group B (BRoV B). Calves were weighed on arrival and at 14, 49, 56, and 77 d using a digital body scale. Treatments for disease and mortalities that occurred ohowed a reduction in weight gain of up to 15 kg compared to calves without diarrhea. Calves that tested positive for C.parvum had a lower body weight at 49, 56, and 77 d; calves that tested positive for BCoV had a lower body weight at 56 and 77 d. This study demonstrates that the prevalence of BCoV, BRoV A, and C.parvum infection is high in this population of calves and has significant effects on the occurrence of diarrhea and body weight gain. Future studies should evaluate approaches for minimizing the effect of infection with these pathogens to improve the welfare, health, and productivity of dairy calves.Camel milk, similar to cow milk, contains all of the essential nutrients as well as potentially health-beneficial compounds with anticarcinogenic, antihypertensive, and antioxidant properties. Camel milk has been used for the treatment of allergies to cow milk, diabetes, and autism. Camel milk helps decrease cholesterol levels in blood and improves metabolism. One of the most desirable food tastes is sweetness. However, the excessive ingestion of sugar negatively affects human health. Monk fruit sweetener is a natural, 0-calorie sweetener with many health-beneficial functions. Monk fruit sweetener helps decrease symptoms of asthma and diabetes, prevents oxidation and cancer, protects the liver, regulates immune function, and lowers glucose levels. Monk fruit sweetener is 100 to 250 times sweeter than sucrose. The objective of this study was to examine the influence of different concentrations of monk fruit sweetener on the physicochemical properties and microbiological counts of drinking yogurt made from camel milk.