Quantifying climateinduced drought threat to profession and mitigation activities within Balochistan
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide- and nucleoside-activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine-mediated purinergic 1 receptor activation, particularly A2AR activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A2BR activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP-mediated P2X7R activation and ADP-mediated activation of P2Y1R and P2Y12R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A2BR signaling, counteracting hypoxia-induced pulmonary injury, and that ATP release is impaired in erythrocyte in PAH implies erythrocyte dysfunction as an important trigger to affect purinergic signaling for pathogenesis of PAH. The present review focuses on current knowledge on alteration of nucleot(s)ide-mediated purinergic signaling as a potential disease mechanism underlying the development of PAH.Background Outcomes data in patients with cardiac amyloidosis after implantable cardioverter-defibrillator (ICD) implantation are limited. We compared outcomes of patients with ICDs implanted for cardiac amyloidosis versus nonischemic cardiomyopathies (NICMs) and evaluated factors associated with mortality among patients with cardiac amyloidosis. Methods and Results Using National Cardiovascular Data Registry's ICD Registry data between April 1, 2010 and December 31, 2015, we created a 15 propensity-matched cohort of patients implanted with ICDs with cardiac amyloidosis and NICM. We compared mortality between those with cardiac amyloidosis and matched patients with NICM using Kaplan-Meier survival curves and Cox proportional hazards models. We also evaluated risk factors associated with 1-year mortality in patients with cardiac amyloidosis using multivariable Cox proportional hazards regression models. Among 472 patients with cardiac amyloidosis and 2360 patients with propensity-matched NICMs, 1-year mortality was significantly higher in patients with cardiac amyloidosis compared with patients with NICMs (26.9% versus 11.3%, P2.5 (HR, 4.34; 95% CI, 2.72-6.93). Conclusions Mortality after ICD implantation is significantly higher in patients with cardiac amyloidosis than in patients with propensity-matched NICMs. read more Factors associated with death among patients with cardiac amyloidosis include prior syncope, ventricular tachycardia, cerebrovascular disease, diabetes mellitus, and impaired renal function.
Cholinergic neurotransmission regulates neuroinflammation in Parkinson disease (PD).
The authors conducted a delayed-start study of donepezil for cognitive decline in non-demented PD patients. The study consisted of a 96-week randomized placebo-controlled double-blind phase 1, followed by a 24-week donepezil extension phase 2. The primary outcome measure was a change in the Mini-Mental State Examination (MMSE) at week 120.
A total of 98 patients were randomly allocated to the early-start (donepezil-to-donepezil) and delayed-start (placebo-to-donepezil) groups. Mean (SD) of the baseline MMSE was 27.6 (2.0) and 28.0 (2.1), respectively. MMSE change at week 120 was better in the early-start group than in the delayed-start group, but the difference was not significant. The MMSE declined in apolipoprotein ε4 carriers, but not in non-carriers, and the factor interaction (intervention × ε4 genotype) was highly significant (
<0.001). Analyzed with the interaction, the difference was significant (group difference 1.95 [0.33 to 3.57],
=0.018). The MMSE decline slope in phase 1 was significantly better in the early-start group than in the delayed-start group (
=0.048).
Cognitive function deteriorated in ε4 carriers, but not in non-carriers, and early-start donepezil may postpone cognitive decline in the former.
Cognitive function deteriorated in ε4 carriers, but not in non-carriers, and early-start donepezil may postpone cognitive decline in the former.
To describe potential signaling (cross-talk) between dystrophic skeletal muscle and tendon in Duchenne muscular dystrophy.
Review of Duchenne muscular dystrophy and associated literature relevant to muscle-tendon cross-talk.
Duchenne muscular dystrophy results from the absence of the protein dystrophin and the associated dystrophin - glycoprotein complex, which are thought to provide both structural support and signaling functions for the muscle fiber. In addition, there are other potential signal pathways that could represent cross-talk between muscle and tendon, particularly at the myotendinous junction. Duchenne muscular dystrophy is characterized by multiple pathophysiologic mechanisms. Herein, we explore three of these (1) the extracellular matrix, fibrosis, and fat deposition; (2) satellite cells; and (3) tensegrity. A key signaling protein that emerged in each was transforming growth factor - beta one (TGF-β1).].
Duchenne muscular dystrophy results from the absence of the protein dystrophin and the associated dystrophin - glycoprotein complex, which are thought to provide both structural support and signaling functions for the muscle fiber. In addition, there are other potential signal pathways that could represent cross-talk between muscle and tendon, particularly at the myotendinous junction. Duchenne muscular dystrophy is characterized by multiple pathophysiologic mechanisms. Herein, we explore three of these (1) the extracellular matrix, fibrosis, and fat deposition; (2) satellite cells; and (3) tensegrity. A key signaling protein that emerged in each was transforming growth factor - beta one (TGF-β1).].