QuantumClassical Simulators regarding Molecular Engines Driven Only simply by Light

From Stairways
Jump to navigation Jump to search

Tylophorine-based compounds and natural cardiotonic steroids (cardenolides and bufadienolides) are two classes of transmissible gastroenteritis coronavirus inhibitors, targeting viral RNA and host cell factors, respectively. We tested both types of compounds against two types of coronaviruses, to compare and contrast their antiviral properties, and with view to their further therapeutic development. Examples of both types of compounds potently inhibited the replication of both feline infectious peritonitis virus and human coronavirus OC43 with EC50 values of up to 8 and 16 nM, respectively. Strikingly, the tylophorine-based compounds tested inhibited viral yields of HCoV-OC43 to a much greater extent (7-8 log magnitudes of p.f.u./ml) than the cardiotonic steroids (about 2-3 log magnitudes of p.f.u./ml), as determined by end point assays. Based on these results, three tylophorine-based compounds were further examined for their anti-viral activities on two other human coronaviruses, HCoV-229E and SARS-CoV-2. These three tylophorine-based compounds inhibited HCoV-229E with EC50 values of up to 6.5 nM, inhibited viral yields of HCoV-229E by 6-7 log magnitudes of p.f.u./ml, and were also found to inhibit SARS-CoV-2 with EC50 values of up to 2.5-14 nM. In conclusion, tylophorine-based compounds are potent, broad-spectrum inhibitors of coronaviruses including SARS-CoV-2, and could be used for the treatment of COVID-19.Background The management of patients receiving warfarin is complicated. This study evaluated the anticoagulation quality of warfarin, explored potential predictors associated with poor anticoagulation quality, and elucidated the role of clinical pharmacists in the management of warfarin treatment. Methods We retrospectively collected data on patients who either initially received warfarin or returned to warfarin after withdrawal between January 1, 2015 and January 1, 2020. The primary outcome was time in therapeutic range (TTR), and a TTR of ≥60% was considered as good anticoagulation quality. The secondary outcomes included thromboembolic and bleeding events during the follow-up. We assessed the TTR of each participant and investigated the potential predictors of poor anticoagulation quality (TTR 30 days independently contributed to poor anticoagulation quality. Meanwhile, the use of PPCC model improved the anticoagulation quality of warfarin.The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.To evaluate the biodistribution of hydroxychloroquine (HCQ) in cynomolgus macaques and receive dynamic quantitative relationship between plasma, blood, and lung tissue concentration using the population pharmacokinetic modeling method, seventeen cynomolgus macaques were divided into six groups according to different HCQ dosing regimens over 5 days. The monkeys were euthanized, and blood, plasma, urine, feces and ten tissues were collected. All the samples were prepared by protein precipitation and analyzed by HPLC-MS/MS detection. The population pharmacokinetics of HCQ in the plasma, red blood cells, and lung tissue was conducted and simulated via ADAPT program. Results demonstrated that the maximum concentration (Cmax) of HCQ was 292.33 ng/mL in blood and 36.90 ng/mL in plasma after single dose of 3 mg/kg. The value of area under curve (AUC0-∞) was determined as 5,978.94 and 363.31 h* ng/mL for the blood and plasma, respectively. The descending order of the tissue-to-plasma concentration ratio was liver > spncreased over time. The population pharmacokinetic model developed could allow for the assessment of pharmacokinetics-pharmacodynamics relationships, especially relevant tissue concentration-response for HCQ. Determining appropriate treatment regimens in animals allows translation of these to clinical studies.An orally active follicle stimulating hormone receptor allosteric agonist would provide a preferred treatment for over 16 million infertile women of reproductive age in low complexity methods (ovulation induction-intrauterine insemination) or in high complexity methods (controlled ovarian stimulation-in vitro fertilization). selleck chemicals We present two oral follicle stimulating hormone receptor allosteric agonist compounds that have the desired pharmacology, drug metabolism, pharmacokinetics, and safety profile for clinical use. These molecules provide a single agent suitable for ovulation induction-intrauterine insemination or controlled ovarian stimulation-in vitro fertilization that is more convenient for patients and achieves similar preclinical efficacy as rec-hFSH. TOP5668, TOP5300 were evaluated in vitro in Chinese hamster ovary cells transfected with individual glycoprotein receptors measuring cAMP (FSHR, LH/CGR, thyroid stimulating hormone receptor). TOP5668 was found to have solely follicle stimulating hormone rting hormone vs. reference proteins pregnant mare serum gonadotropin or high dose rec-hFSH. ADME/PK and safety profiles were favorable. In addition, there was no appreciable activity on thyroid hormones by TOP5300 in 14-days toxicological study in rat or dog. The selected lead compound, TOP5300 stimulated a more robust increase in estradiol production from granulosa-lutein cells from women with polycystic ovarian syndrome patient compared to rec-hFSH. Conclusions Two novel oral FSHR allosteric agonist, TOP5668 and TOP5300, were found to mimic the biological activity of rec hFSH in preclinical studies. Both compounds led to folliculogenesis and superovulation in rat and mice. Specifically, TOP5300 led to a similar number of ovulated oocytes that fertilized and developed into hatched blastocysts in mice when compared to rec-hFSH. The safety profile demonstrated lack of toxicity.