Recognition and also characterization of CD5 inside Nile tilapia Oreochromis niloticus
Affinity of rCTLA4-Ig was also evaluated by the flow cytometry method. Finally, its biological activity was determined by T cell inhibition test. The results showed rCTLA4-Ig and the belatacept protein have some similarities in structure and function. In addition, rCTLA4-Ig was able to bind CD80/CD86 and inhibit T cell function. Although flow cytomery results showed that the standard protein (CTLA4-Ig), represented better affinity than rCTLA4-Ig, the recombinant protein was able to inhibit T cell proliferation as well as CTLA4-Ig.The aim of the study was to evaluate the drug-resistance patterns of Staphylococcus aureus infections in Baqiyatallah hospital within 2010-2019 and to present a novel monitoring and detection system making use of molecular laboratory methods teamed with molecular delimitation analyses. This in turn is a primary step to establishment of a digital health system within Baqiyatallah hospital as a perfect pilot instance for other hospitals to follow upon. Totally, 100 patients of Baqiyatallah hospital suspicious of Staphylococcus aureus infections were sampled. Bacterial identity confirmations were done using routine biochemical test. Antibiograms were made for all the patients in this study. Consequently, bacterial total DNA was extracted and 16S rDNA gene amplified and sequenced for all patients. To uncover any cryptic strain grouping within the samples, a molecular delimitation method, i.e. automated barcode gap discovery (ABGD), was done. Our results showed Ceftaroline to be the most and Erythromycin and Oxacillin the least effective drugs. Delimitation uncovered 19 groups out of which group 19 seemed to have location-specific genetic signals in regards to susceptibility of Erythromycin and Oxacillin. Our results indicate the importance of genetic identification of bacteria with respect to their genetic patterns before antibiotic administration in order to both reduce unnecessary medicine use and to biomonitor the bacterial patterns in respect to their behavior towards general antibiotics.Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), characterized by neuroinflammation, oligodendrocytes (OLs) loss, and demyelination Curcumin, a natural phenolic substance, has been shown to have significant therapeutic properties in various neurodegenerative diseases, including MS. In our laboratory by loading curcumin in dendrosome nanoparticles we improved its solubility and bioavailability. Our previous study showed anti-inflammatory and anti-oxidative effects of dendrosomal nano-curcumin (DNC) in experimental autoimmune encephalomyelitis (EAE) model of MS. Here, by using a toxic demyelination model, induced by cuprizone (CPZ), we investigated the protective effect of DNC on oligodendroglial lineage cells (OLLC) and myelin preservation in context of acute demyelination. CPZ is a copper chelator, thus its intake reduces the mitochondrial activity, activates oxidative stress response, leading to specific OLs death, due to their high-energy consumption. We also evaluated DNC effect on activation of astrocytes and microglia, which are enriched in both MS and CPZ demyelinated lesions. Our results demonstrated that DNC treatment protected Oligodendrocyte lineage cells (OLLCs) against CPZ toxin. Besides DNC treatment suppressed accumulation of astrocytes and microglia in CC of CPZ-fed mice, compared to PBS treated onse. Perifosine price Moreover, DNC treatment lead to higher index of luxol fast bluefast blue (LFB) and myelin-specific proteins, myelin basic protein (MBP) intensity in the corpus callosum (CC), as indicators of myelin content. These results suggest a potent pleiotropic therapeutic efficiency for DNC for protection of myelinating cells, possibly via suppression of astrocytes and microglia.Overexpression of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) by Escherichia coli leads to formation of insoluble and inactive proteins, inclusion bodies. The aim of this study was to improve recovery of biologically active hGM-CSF from inclusion bodies. The effect of types, concentrations and pHs of denaturing agents and addition of reducing agents on the yield of inclusion bodies solubilization was evaluated. Next, various conditions were evaluated for refolding hGM-CSF using a two-step design of experiment (DOE) including primary screening by factorial design, and then optimization by response surface design. It was found that hGM-CSF inclusion bodies can be efficiently solubilized with 4 M urea and 4 mM β-mercaptoethanol, pH = 9. A response surface quadratic model was employed to predict the optimum refolding conditions and the accuracy of this model was confirmed by high value of R2 (0.99) and F-value of 0.64. DOE results revealed that sorbitol (0.235 M), imidazole (97 mM), and SDS (0.09%) would be the optimum buffer additives for refolding of hGM-CSF. Following refolding studies, the obtained protein was subjected to circular dichroism which confirmed correct secondary structure of the refolded hGM-CSF. The refolded hGM-CSF exhibited reasonable biological activity compared with standard protein. The approach developed in this work can be important to improve the refolding of other proteins with similar structural features.Several species of dangerous snakes are found in Iran and, according to the Emergency Response Center of Iran from 2002 to 2011, 53,787 Iranians have suffered from snakebite. Although the mortalities caused by snakebite are very low, snakebite-related amputations are still a major concern. Currently, anti-venom polyclonal antibodies derived from animals, such as horses are used to treat snakebites; however, in some cases they can cause anaphylactic shock and serum sickness. In line with this premise, generation of recombinant anti-venom antibodies can be considered as an alternative strategy. Single-chain fragment variable (scFv) antibodies offer several advantages compared to the whole antibodies, including ease of production, high affinity and specificity. In the present study, scFv antibodies were selected against the venom of the most poisonous snakes in Iran using phage display technology. Phage particles harboring anti-venom specific scFv were separated and scFv antibodies were produced in bacteria. In-vitro assay showed that polyclonal scFvs specifically bind to the venom.