Relative evaluation associated with COVID19 scenario fatality charge involving 2 surf throughout Nepal

From Stairways
Jump to navigation Jump to search

In parallel, numbers of tyrosine hydroxylase-positive (TH+) neurons declined significantly in the diencephalon and pituitary after rotenone treatment. Slowed, spontaneous movement and reduced feeding behavior were observed in rotenone-treated fish. Rotenone treatment resulted in a significantly higher gonadosomatic index with many mature vitellogenic oocytes in ovaries and lowered dopaminergic activity in these fish. These results indicate that rotenone influences neurobehavioral and reproductive functions through dopaminergic neuronal cell loss in gulsha brain.In the recent years many studies have shown that wetland plants play beneficial roles in bioelectricity enhancement in constructed wetland-microbial fuel cell (CW-MFC) because of the exudation of root oxygen and root exudates. In this study, the long-term roles of plants on the bioelectricity generation and contaminant removal were investigated in multi-anode (Anode1 and Anode2) and single cathode CW-MFCs. The electrode distances were 20 cm between Anode1-cathode and 10 cm between Anode2-cathode, respectively. Additionally, the employment of natural conductive pyrrhotite mineral as cathode material was firstly investigated in CW-MFC system. A cathode potential of -98 ± 52 mV to -175 ± 60 mV was achieved in the unplanted (CW-MFC 1), and planted CW-MFCs with Iris pseudacorus (CW-MFC 2), Lythrum salicaria (CW-MFC 3), and Phragmites australis (CW-MFC 4). The maximum power densities of Anode1-cathode and Anode2-cathode were 8.23 and 15.29 mW/m2 in CW-MFC 1, 8.51 and 1.67 mW/m2 in CW-MFC 2, 5.67 and 3.15 mW/m2 in CW-MFC 3, and 7.59 and 14.71 mW/m2 in CW-MFC 4, respectively. Interestingly, smaller power density was observed at Anode2-cathode, which has shorter electrode distance than Anode1-cathode in both CW-MFC 2 and CW-MFC 3, which indicates the negative role of oxygen released from the flourished plant roots at Anode2 micro-environment in power production. Therefore, recovering power from commercial CW-MFCs with flourished plants will be a challenge. The contradiction between keeping short electrode distance and avoiding the interference from plant roots to maintain anaerobic anode may be solved by the proposed modular CW-MFCs.Hydroxylated bromodiphenyl ethers (OH-BDEs) have raised great concern due to their potential endocrine disrupting effects on humans. In vitro experiments have indicated OH-BDEs can inhibit the activity of thyroid hormone (TH) sulfotransferases (SULTs); however, the molecular mechanism has not been investigated in depth. In this work, we employed 17 OH-BDEs with five or fewer Br atoms, and performed integrated computational simulations to unravel the possible inhibition mechanism of OH-BDEs on human SULT1A1. The molecular docking results demonstrate that OH-BDEs form hydrogen bonds with residues Lys106 and His108, and the neutral OH-BDEs show comparable binding energies with their anionic counterparts. The further hybrid quantum mechanical/molecular mechanical (QM/MM) calculations unravel a metabolic mechanism of OH-BDEs comprised by proton abstraction and sulfation steps. This mechanism is involved in the SULT1A1 inhibition by some OH-BDEs comprised of three or fewer Br atoms, while other OH-BDEs likely only form ternary complexes to competitively inhibit SULT1A1 activity. Moreover, the effect of the hydroxyl group of OH-BDEs on SULT1A1 inhibition potential follows the order of ortho-OH BDE > meta-OH BDE > para-OH BDE. These results provide an insight into the inhibition mechanism of OH-BDEs to SULT1A1 at the molecular level, which are beneficial in illuminating the molecular initiating events involved in the TH disruption of OH-BDEs.Biochars (BCs) are currently widely used, yet their impact on human health is mostly unknown. We generated micro-tobacco stem-pyrolysed BCs (mTBCs) at different pyrolysis temperatures and assessed pulmonary toxicity in normal human lung epithelial BEAS-2B cells. mTBCs generated at 350 °C (mTBC350) and 650 °C (mTBC650) were analysed and compared for physicochemical properties and adverse effects. Pyrolysis temperature had a significant influence on chemical composition, particle size, specific surface area and aromatic carbon structure. mTBC650 displayed a highly ordered aromatic carbon structure with smaller particle size, high surface area (20.09 m2/g) and high polycyclic aromatic hydrocarbon and metal content. This composition could promote reactive oxygen species accumulation accompanied by greater cytotoxicity, genotoxicity and epithelial barrier malfunction in cultured cells. Thus, the risk of pulmonary toxicity owing to micro-BCs (mBCs) is affected by pyrolysis temperature. Long-term exposure to mBCs produced at high temperatures may lead to or exacerbate pulmonary disease.The Wuda coalfield, Inner Mongolia, China, has been suffering from serious coal fire disaster for more than half a century. In the past decade, the central and local governments have carried out many fire-fighting projects to put out the coal fires, but coal fires still sporadically occur in the coalfield. Previous studies showed that coal fires could release large amounts of mercury (Hg) into the environment. Meanwhile, the rapid industrial development in recent years in Wuda area has also discharged a certain amount of Hg. Identification and quantification of the Hg emitted from coal fires and industrial sources is critical to formulate appropriate environmental policies. This study determined Hg isotope compositions in different types of coals from Wuda coal fire area and surface soils with different distances to the coal fire area, with an aim of anchoring the potential Hg sources in soils. The results showed that the coals had moderately negative δ202Hg (-2.02∼-1.21‰) and slightly negative Δ199Hg (-0.14-0.00‰), while the soils generally had more positive δ202Hg (-1.97∼-0.26‰) and Δ199Hg (-0.07-0.04‰) with distinct isotope ranges among different sampling sites. According to characteristic Hg isotope compositions of different sources, we concluded that the Hg in Wuda soils mainly sourced from cement plants and coal fires, and coal fires were still an important Hg contamination source in Wuda area.Some sanitary landfills in China are required to treat aging landfill leachate that is highly saline. In this study, the effectiveness of an emergency disk tube-reverse osmosis (DTRO) treatment system for such a refractory mature landfill leachate was evaluated. A molecular-level analysis was then applied to reveal the changes of the characteristics of leachate organic matter (OM). The DTRO system achieved >83% water recovery rate, reduced the electrical conductivity of effluent to 0.15-0.22 ms/cm, and reduced carbonaceous and nitrogenous pollutants to a level suitable for discharge. Furthermore, the vast majority of salts (e.g., chloride and sulfate ions), as well as refractory OM (e.g., humic- and fulvic-like substances), were effectively removed. The DTRO system can effectively remove a large number of macromolecular dissolved organic compounds with carbon number >23, as well as highly unsaturated compounds with DBE >12. Additionally, > 80% of the molecules assigned to the dissolved OM (DOM) were removed; even CHONS compounds with complex molecular structures were completely removed. The constitution of DOM in the DTRO effluent was simple, mainly comprising anti-sludge agents (e.g., small molecule alcohol and alkyl benzene sulfonic acid, etc.). However, the DOM in the resulting membrane concentrates was very similar to that in raw landfill leachate and the concentration was much higher. Therefore, an effective and feasible method should be developed to treat DTRO membrane concentrates because they pose high environmental risk.Cadmium, a heavy metal pollutant in industrial production, is found in air, water and soil, which is harmful to human health and can lead to diseases, such as asthma, lung cancer, and emphysema. In this study, the toxicity of cadmium on human bronchial epithelial cells (BEAS-2B) was investigated. Cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) level, apoptosis and the related signaling pathways were detected with MTT assay, Rhodamine staining, DCFH-DA staining, Hoechst33258 staining and Western blot methods respectively. The results showed that the cell viability decreased, the mitochondrial membrane potential declined, ROS was accumulated and apoptotic rate raised in BEAS-2B cells. Meanwhile, the expression of B-cell lymphoma-2 (Bcl-2) was downregulated, while the expression of Bcl-2-associated X protein (Bax) and the cleaved caspase-3 was upregulated, which indicated mitochondria-mediated intrinsic apoptosis pathway was activated. Furthermore, the phosphorylation of JNK, ERK and p38 was enhanced respectively, which manifested that MAPK signaling pathways were activated. Therefore, it could be concluded that cadmium could increase intracellular ROS, result in cellular oxidative stress, activate JNK, ERK and p38 MAPK pathways and ultimately lead to apoptosis of BEAS-2B cells by activating mitochondria-mediated intrinsic apoptosis pathway. This study provided useful information to elucidate the toxicity of cadmium and revealed the possible mechanism for the occurrence of lung disease induced by cadmium.Acid mine drainage (AMD) is one of an important pollution sources associated with mining activities and often inhibits plant growth. Plant growth promoting bacteria has received extensive attention for enhancing adaptability of plants growing in AMD polluted soils. The present study investigated the effect of plant growth promoting Bacillus spp. (strains UM5, UM10, UM13, UM15 and UM20) to improve vetiver (Chrysopogon zizanioides L.) adaptability in a soil irrigated with 50% AMD. Bacillus spp. exhibited P-solubilization, IAA and siderophore production. The Bacillus spp. strains UM10 and UM13 significantly increased shoot (4.2-2.5%) and root (3.4-1.9%) biomass in normal and AMD-impacted soil, respectively. Bacillus sp. strain UM20 significantly increased soil AP (379.93 mg/kg) while strain UM13 increased TN (1501.69 mg/kg) and WEON (114.44 mg/kg) than control. Proteobacteria, Chloroflexi, Acidobacteria and Bacteroidetes are the dominant phyla, of which Acidobacteria (12%) and Bacteroidetes (8.5%) were dominated in soil inoculated with Bacillus sp. strain UM20 while Proteobacteria (70%) in AMD soil only. However, the Chao1 and evenness indices were significantly increased in soil inoculated with Bacillus sp. strain UM13. find more Soil pH, AP and N fractions were positively correlated with the inoculation of bacterial strains UM13 and UM20. Plant growth promoting Bacillus spp. strains UM13 and UM20 were the main contributors to the variations in the rhizosphere bacterial community structure, improving soil available P, TN, WEON, NO3--N thus could be a best option to promote C. zizanioides adaptability in AMD-impacted soils.The strategical integration of membrane water filtration with semiconductor photocatalysis presents a frontier in deep purification with a self-cleaning capability. However, the membrane fouling caused by the cake layer of the reclaimed TiO2 nanoparticles is a key obstacle. Herein, mesoporous WO3/TiO2 spheres (∼450 nm in diameter) consisting of numerous self-assembled WO3-decoated anatase TiO2 nanocrystallites are successfully prepared via a facile wet-chemistry route. The decoration of monolayered WO3 significantly affects the surface, photocatalytic, and optical properties of original mesoporous TiO2 spheres. XRD and Raman analyses show the presence of monolayered WO3 suppresses the crystal growth of TiO2 during the calcination process, significantly improves the surface acidity, and causes an obvious red shift in absorption edge. These favorable textural properties, coupling the enhanced interfacial charge carrier separation, render mesoporous WO3/TiO2 spheres with a superior photocatalytic activity in degradation of methylene blue under UV, visible, and solar light irradiations.