Resilience and the role regarding equids throughout non profit crises

From Stairways
Jump to navigation Jump to search

Since the first successful pregnancies achieved by intracytoplasmic sperm injection (ICSI) were reported, ICSI has become an essential technique in assisted reproductive technology (ART). ICSI uses micropipettes with a spiking tip to penetrate the zona pellucida and membrane. Then, the cytoplasm is usually aspirated into the micropipette for membrane breakage (conventional-ICSI). The survival and fertilization rates of mouse oocytes after conventional-ICSI were as low as 16% and 8%, respectively. Kimura and Yanagimachi applied a piezo drive unit, mercury, and a micropipette with a flat tip for mouse ICSI. The membrane breakage could be performed semi-automatically by combining these types of equipment without cytoplasmic aspiration into the micropipette (piezo-ICSI). These authors reported significantly higher survival and fertilization rates (80% and 78%) compared to those of conventional-ICSI (16% and 8%). Therefore, the piezo-ICSI may be effective not only for mouse oocytes but also for human oocyte ICSI. However, only five papers are available that assessed the effectiveness of piezo-ICSI compared to conventional-ICSI for human oocytes. All of these five papers reported significantly higher fertilization rates compared to those of conventional-ICSI. The goal of the piezo-ICSI protocol described here is to improve the clinical results of ICSI compared to the conventional-ICSI.Nonalcoholic Steatohepatitis (NASH) is a condition within the spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD), which is characterized by liver fat accumulation (steatosis) and inflammation leading to fibrosis. Preclinical models closely recapitulating human NASH/NAFLD are essential in drug development. While liver biopsy is currently the gold standard for measuring NAFLD/NASH progression and diagnosis in the clinic, in the preclinical space, either collection of whole liver samples at multiple timepoints during a study or biopsy of liver is needed for histological analysis to assess the disease stage. Conducting a liver biopsy mid-study is an invasive and labor-intensive procedure, and collecting liver samples to assess disease level increases the number of research animals needed for a study. Thus, there is a need for a reliable, translatable, non-invasive imaging biomarker to detect NASH/NAFLD in these preclinical models. Non-invasive ultrasound-based B-mode images and Shear Wave Elastography (SWE) can be used to measure steatosis as well as liver fibrosis. To assess the utility of SWE in preclinical rodent models of NASH, animals were placed on a pro-NASH diet and underwent non-invasive ultrasound B-mode and shear wave elastography imaging to measure hepatorenal (HR) index and liver elasticity, measuring progression of both liver fat accumulation and tissue stiffness, respectively, at multiple time points over the course of a given NAFLD/NASH study. The HR index and elasticity numbers were compared to histological markers of steatosis and fibrosis. The results showed strong correlation between the HR index and percentage of Oil Red O (ORO) staining, as well as between elasticity and Picro-Sirius Red (PSR) staining of livers. The strong correlation between classic ex vivo methods and in vivo imaging results provides evidence that shear wave elastography/ultrasound-based imaging can be used to assess disease phenotype and progression in a preclinical model of NAFLD/NASH.Use of the pig as a preclinical and translatable animal model has been well-documented and accepted by research fields investigating cardiovascular systems, gastrointestinal systems, and nutrition, and the pig is increasingly being used as a large animal model in neuroscience. Furthermore, the pig is an accepted model to study neurodevelopment as it displays brain growth and development patterns similar to what occurs in humans. As a less common animal model in neuroscience, surgical and dissection procedures on pigs may not be as familiar or well-practiced among researchers. Therefore, a standardized visual protocol detailing consistent extraction and dissection methods may prove valuable for researchers working with the pig. The following video showcases a technique to remove the pig brain while keeping the cortex and brainstem intact and reviews methods to dissect several commonly investigated brain regions including the brainstem, cerebellum, midbrain, hippocampus, striatum, thalamus, and medial prefrontal cortex. learn more The purpose of this video is to provide researchers with the tools and knowledge necessary to consistently perform a brain extraction and dissection on the four-week-old pig.This paper describes a two-alternative, forced-choice, staircase, tracking procedure, called the Taste Detection Threshold (TDT) test, that provides a reliable measure of sweet, salty, and umami taste detection thresholds from childhood to adulthood. Advantages of the method include procedures that are identical for children and adults, thus allowing the determination of age-related and individual differences in taste perception, if any, and tasks that can be completed in a relatively short time frame, do not rely on continuous attention or require memorization, control for subjective response biases, and minimize the impact of language development. After a 1 hour fast, participants are presented with pairs of solutions; in each pair, one solution is water, and the other solution contains varying concentrations of the tastant. Using a whole-mouth tasting method, participants taste each solution (without swallowing and with rinsing between tastings) and then point to the solution with a taste or that tastes different from water. The concentration of the stimulus in the subsequent pair increases after a single incorrect response and decreases after two consecutive correct responses. A reversal occurs when the concentration sequence changes direction. The task is deemed completed after the occurrence of four reversals, provided there are a maximum of two dilution steps between two successive reversals, and the series of reversals do not form an ascending pattern. These additional criteria ensure greater reliability in outcomes. The TDT is then calculated as the geometric mean of the concentrations of the four reversals. This method has real-world relevance as it provides information on a dimension of taste perception that is independent of hedonics, and that can change with aging and certain disease states, making it a valuable psychophysical test.