Steric outcomes around the intramolecular cost shift fluorescence involving benzobthiophene11dioxide bridged macrocages

From Stairways
Jump to navigation Jump to search

In this study, to describe the influence of the quantum effect of spatial dispersion, we used the discrete sources method, which incorporates the generalized non-local optical response theory. This approach made it possible to account for the influence of the nonlocal effect on the optical properties of composite nanoparticles, including the impact of the asymmetry of the core-shell structure on the energy characteristics. It was found that taking spatial dispersion into account leads to a decrease in the maximum value of the concentration of electromagnetic energy up to 25%, while the blue shift can reach 15 nm.The controlled synthesis of single-walled carbon nanotubes (SWNTs) is essential for their industrial application. This study investigates the synthesis yield of SWNTs, which depends on the positions of the samples on a horizontal chemical vapor deposition (CVD) system. learn more Methane and Fe thin films were used as the feedstock and catalyst for SWNTs synthesis, respectively. A high-resolution scanning electron microscope was used to examine the synthesis yield variation of the SWNTs along the axial distance of the reactor. The morphology and crystallinity of the fabricated SWNTs were evaluated by atomic force microscopy and Raman spectroscopy, respectively. We observed that the highest synthesis yield of the SWNTs was obtained in the rear region of the horizontal reactor, and not the central region. These results can be applied to the synthesis of various low-dimensional nanomaterials, such as semiconducting nanowires and transition metal dichalcogenides, especially when a horizontal CVD chamber is used.For scaling-down advanced nanoscale semiconductor devices, tungsten (W)-film surface chemical mechanical planarization (CMP) has rapidly evolved to increase the W-film surface polishing rate via Fenton-reaction acceleration and enhance nanoscale-abrasive (i.e., ZrO2) dispersant stability in the CMP slurry by adding a scavenger to suppress the Fenton reaction. To enhance the ZrO2 abrasive dispersant stability, a scavenger with protonate-phosphite ions was designed to suppress the time-dependent Fenton reaction. The ZrO2 abrasive dispersant stability (i.e., lower H2O2 decomposition rate and longer H2O2 pot lifetime) linearly and significantly increased with scavenger concentration. However, the corrosion magnitude on the W-film surface during CMP increased significantly with scavenger concentration. By adding a scavenger to the CMP slurry, the radical amount reduction via Fenton-reaction suppression in the CMP slurry and the corrosion enhancement on the W-film surface during CMP performed that the W-film surface polishing rate decreased linearly and notably with increasing scavenger concentration via a chemical-dominant CMP mechanism. Otherwise, the SiO2-film surface polishing rate peaked at a specific scavenger concentration via a chemical and mechanical-dominant CMP mechanism. The addition of a corrosion inhibitor with a protonate-amine functional group to the W-film surface CMP slurry completely suppressed the corrosion generation on the W-film surface during CMP without a decrease in the W- and SiO2-film surface polishing rate.The production of stable and homogeneous batches during nanoparticle fabrication is challenging. Surface charging, as a stability determinant, was estimated for 3-aminopropyltriethoxysilane (APTES) coated pre-formed magnetite nanoparticles (MNPs). An important consideration for preparing stable and homogenous MNPs colloidal systems is the dispersion stage of pre-formed samples, which makes it feasible to increase the MNP reactive binding sites, to enhance functionality. The results gave evidence that the samples that had undergone stirring had a higher loading capacity towards polyanions, in terms of filler content, compared to the sonicated ones. These later results were likely due to the harsh effects of sonication (extremely high temperature and pressure in the cavities formed at the interfaces), which induced the destruction of the MNPs.The efficacy in superparamagnetic hyperthermia (SPMHT) and its effectiveness in destroying tumors without affecting healthy tissues depend very much on the nanoparticles used. Considering the results previously obtained in SPMHT using magnetite and cobalt ferrite nanoparticles, in this paper we extend our study on CoxFe3-xO4 nanoparticles for x = 0-1 in order to be used in SPMHT due to the multiple benefits in alternative cancer therapy. Due to the possibility of tuning the basic observables/parameters in SPMHT in a wide range of values by changing the concentration of Co2+ ions in the range 0-1, the issue explored by us is a very good strategy for increasing the efficiency and effectiveness of magnetic hyperthermia of tumors and reducing the toxicity levels. In this paper we studied by computational simulation the influence of Co2+ ion concentration in a very wide range of values (x = 0-1) on the specific loss power (Ps) in SPMHT and the nanoparticle diameter (DM) which leads to the maximum specific loss power (PsM). We also determined the maximum specific loss power for the allowable biological limit (PsM)l which doesn't affect healthy tissues, and how it influences the change in the concentration of Co2+ ions. Based on the results obtained, we established the values for concentrations (x), nanoparticle diameter (DM), amplitude (H) and frequency (f) of the magnetic field for which SPMHT with CoxFe3-xO4 nanoparticles can be applied under optimal conditions within the allowable biological range. The obtained results allow the obtaining a maximum efficacy in alternative and non-invasive tumor therapy for the practical implementation of SPMHT with CoxFe3-xO4 nanoparticles.In this study, the dependence of the catalytic activity of highly oriented pyrolytic graphite (HOPG)-supported bimetallic Pd-Au catalysts towards the CO oxidation based on the Pd/Au atomic ratio was investigated. The activities of two model catalysts differing from each other in the initial Pd/Au atomic ratios appeared as distinctly different in terms of their ignition temperatures. More specifically, the PdAu-2 sample with a lower Pd/Au surface ratio (~0.75) was already active at temperatures less than 150 °C, while the PdAu-1 sample with a higher Pd/Au surface ratio (~1.0) became active only at temperatures above 200 °C. NAP XPS revealed that the exposure of the catalysts to a reaction mixture at RT induces the palladium surface segregation accompanied by an enrichment of the near-surface regions of the two-component Pd-Au alloy nanoparticles with Pd due to adsorption of CO on palladium atoms. The segregation extent depends on the initial Pd/Au surface ratio. The difference in activity between these two catalysts is determined by the presence or higher concentration of specific active Pd sites on the surface of bimetallic particles, i.e., by the ensemble effect. Upon cooling the sample down to room temperature, the reverse redistribution of the atomic composition within near-surface regions occurs, which switches the catalyst back into inactive state. This observation strongly suggests that the optimum active sites emerge under reaction conditions exclusively, involving both high temperature and a reactive atmosphere.In the absence of standard methods for the detection/quantification of nanoplastics (NPs) in environmental samples, commercial nanopolymers are utilized as proxies for toxicity testing and environmental risk assessment. In marine species, a considerable amount of data are now available on the effects of nanopolystyrene (PS-NPs) of different size/surface characteristics. In this work, amino modified PS-NPs (PS-NH2) (50 and 100 nm), purchased from two different companies, were compared in terms of behavior in exposure media and of biological responses, from molecular to organism level, in the model marine bivalve Mytilus. Different PS-NH2 showed distinct agglomeration and surface charge in artificial sea water (ASW) and hemolymph serum (HS). Differences in behavior were largely reflected by the effects on immune function in vitro and in vivo and on early larval development. Stronger effects were generally observed with PS-NH2 of smaller size, showing less agglomeration and higher positive charge in exposure media. Specific molecular interactions with HS components were investigated by the isolation and characterization of the NP-corona proteins. Data obtained in larvae demonstrate interference with the molecular mechanisms of shell biogenesis. Overall, different PS-NH2 can affect the key physiological functions of mussels at environmental concentrations (10 µg/L). However, detailed information on the commercial NPs utilized is required to compare their biological effects among laboratory experiments.The biological synthesis of nanoparticles is emerging as a potential method for nanoparticle synthesis due to its non-toxicity and simplicity. In the present study, a bacterium resistant to heavy metals was isolated from a metal-contaminated site and we aimed to report the synthesis of Fe3O4 nanoparticles via co-precipitation using bacterial exopolysaccharides (EPS) derived from Enterococcus faecalis_RMSN6 strains. A three-variable Box-Behnken design was used for determining the optimal conditions of the Fe3O4 NPs synthesis process. The synthesized Fe3O4 NPs were thoroughly characterized through multiple analytical techniques such as XRD, UV-Visible spectroscopy, FTIR spectroscopy and finally SEM analysis to understand the surface morphology. Fe3O4 NPs were then probed for the Cr(VI) ion adsorption studies. The important parameters such as optimization of initial concentration of Cr(VI) ions, effects of contact time, pH of the solution and contact time on quantity of Cr(VI) adsorbed were studied in detail. The maximum adsorption capacity of the nanoparticles was found to be 98.03 mg/g. The nanoparticles could retain up to 73% of their efficiency of chromium removal for up to 5 cycles. Additionally, prepared Fe3O4 NPs in the concentration were subjected to cytotoxicity studies using an MTT assay. The investigations using Fe3O4 NPs displayed a substantial dose-dependent effect on the A594 cells. The research elucidates that the Fe3O4 NPs synthesized from EPS of E. faecalis_RMSN6 can be used for the removal of heavy metal contaminants from wastewater.Here we report on the non-hydrothermal aqueous synthesis and characterization of nanocrystalline lithium aluminum iodate, LiAl(IO3)4. Morphological and compositional analyses were carried out by using scanning electron microscopy (SEM) and energy-dispersive X-ray measurements (EDX). The optical and vibrational properties of LiAl(IO3)4 have been studied by UV-Vis and IR spectroscopy. LiAl(IO3)4 is found to crystallize in the non-centrosymmetric, monoclinic P21 space group, contrary to what was reported previously. Theoretical simulations and Rietveld refinements of crystal structure support this finding, together with the relatively high Second Harmonic Generation (SGH) response that was observed. Electronic band structure calculations show that LiAl(IO3)4 crystal has an indirect band gap Egap=3.68 eV, in agreement with the experimental optical band gap Egap=3.433 eV. The complex relative permittivity and the refraction index of LiAl(IO3)4 have also been calculated as a function of energy, as well as its elastic constants and mechanical parameters.