The RAB39B gG192R mutation brings about Xlinked prominent Parkinsons disease

From Stairways
Jump to navigation Jump to search

Ibuprofen (IBP) is an emerging environmental contaminant having low aqueous solubility which negatively affects the application of advanced oxidation and adsorption processes. It was determined that as the temperature increased to 473 K, the mole fraction solubility increased considerably from 0.02 × 10-3 to 212.88 × 10-3 (10600-fold). Calculation of the thermodynamic properties indicated an endothermic process, ΔsolH > 0, with relatively high ΔsolS values. Spectroscopic, thermal and chromatographic analyses established the IBP stability at subcritical conditions. In the second part of the study, the degradation of IBP in H2O2-modified subcritical was studied and the effect of each process variable was investigated. The optimum degradation of 88% was reached at an IBP concentration of 15 mg L-1, temperature of 250 °C, 105 min treatment time and 250 mM H2O2. The process was optimized by response surface methodology and a mathematical model was proposed and validated. Temperature was determined as the most influential parameter, followed by H2O2 concentration. At temperatures higher than 230 °C, a small but noticeable reduction in degradation % suggested that the OH· radicals are consumed at a higher rate than they are produced, through side reactions with other radicals and/or IBP by-products. Finally, potential by-products were determined by gas chromatographic-mass spectrometric analysis and potential by-products were proposed.The current work highlights the potential aptitude of copper sulphide (CuS) nanoparticles as cost and energy-effective photo-catalyst for degrading methlyene blue dye under visible light. The surface modified CuS nanoparticles with dopamine (DOP) were prepared by using fast and cost effective microwave assisted methodology. Here, DOP act as biological ligand for the reduction and capping of CuS nanoparticles. The structural and morphological analyses revealed the size controlled synthesis of CuS in presence of DOP with higher thermal stability. The bio-compatibility and non-toxic behaviour of CuS@DOP nanoparticles was evaluated against L929 cell lines and on E. coli and S. aureus strains. The visible light driven photocatalytic activity of the synthesized CuS@DOP was scrutinized for the degradation of methylene blue (MB) dyes, as a model of water contaminants. The photocatalytic degradation of MB by CuS@DOP attained 97% after 10 min of visible light irradiation. The effect of catalyst dose, pH, initial concentration of MB dye, electrolytes, contact time, synergic effect of photolysis and catalysis were studied in detail for optimizing the degradation efficiency of CuS@DOP. The mechanism of CuS@DOP photocatalysis and the formed degraded products were analyzed by using LC/MS technique. The reusability and stability of photocatalyst was confirmed by reusing the catalyst for six successive runs with catalytic performance as high as 80%. Thus, CuS@DOP NPs acted as cost effective, non-toxic visible light driven photo-catalyst for the degradation of organic dye from waste water.Persistent organic pollutants (POPs) are toxic compounds that can persist for extended periods in the environment. The marine environment is considered an important sink for POPs. However, information regarding POPs in deep-sea environments remains limited. In this study, surface sediments from depths below 2,000 m were collected in the western Pacific Ocean to analyze polycyclic aromatic hydrocarbons (PAHs), organic pesticides, and polychlorinated biphenyls (PCBs). The concentrations of PAHs were highest (5.2-24.6 ng g-1 dw). Hexachlorocyclohexanes (HCHs) were the predominant organic pesticide (30-1,730 pg g-1 dw). Dicofol, chlorpyrifos, and malathion were detected only at a few sites. PCBs were not detected in the study area. A principal component analysis with multiple linear regression (PCA-MLR) indicated that PAHs in sediments mainly originated from biomass and coal combustion (∼62%) and petrogenic (∼38%) sources. This study revealed the distribution and potential sources of POPs in sediments of a deep-sea region in the western Pacific Ocean. Further studies of the transformations, sedimentation, and biological interactions of POPs are needed to better understand the fates of POPs in the marine environment and the ecological risks they pose.Sewage sludge has long been regarded as a hazardous waste by virtue of the loaded heavy metals and pathogens. Recently, more advanced technologies are introduced to make use of the nutrients from this hazardous sludge. Successful recovery of sludge's carbon content could significantly convert waste to energy and promote energy sustainability. Meanwhile, the recovery of nitrogen and trace minerals allows the production of fertilizers. This review is elucidating the performances of modern thermal treatment technologies in recovering resources from sewage sludge while reducing its environmental impacts. Exhaustive investigations show that most modern technologies are capable of recovering sludge's carbon content for energy generation. Concurrently, the technologies could as well stabilize heavy metals, destroy harmful pathogens, and reduce the volume of sludge to minimize the environmental impacts. Nevertheless, the high initial investment cost still poses a huge hurdle for many developing countries. Since the initial investment cost is inevitable, the future works should focus on improving the profit margin of thermal technologies; so that it would be more financially attractive. This can be done through process optimization, improved process design as well as the use of suitable co-substrates, additives, and catalyst as propounded in the review.5-hydroxymethylfurfural (5-HMF) is a biomass cellulose platform product that can be transformed into the valuable resource 2,5-diformylfuran (DFF). AZD0156 nmr Polyoxometalates (POMs) have important applications in resource recovery technologies and cellulose wastewater treatment. Ordered mesoporous H5PMo10V2O40/SiO2-NH2 (wt%) nanofibers (HPMoV/meso-SiO2-NH2 (wt%)) were synthesized by the combining in-situ fabrication and electrospinning techniques, using H5PMo10V2O40 (HPMoV) and organic-silica as precursors. Aiming the recovery and transformation of 5-HMF, aerobic oxidation of 5-HMF was explored using these nanofibers as catalysts, while the best yield of DFF (90.0%) was obtained upon HPMoV/meso-SiO2-NH2 (23%) nanofibers after 8 h at 120 °C using oxygen (1.0 MPa). The selectivity to DFF was improved by changing the hydrophilicity of the HPMoV@SiO2 nanofibers to hydrophobicity by modifying SiO2 nanofibers with -NH2R compared to mesoporous SiO2 nanofibers, which allowed the formed DFF to be isolated. In the recycling test, HPMoV@SiO2-NH2 showed good performance, and no leaching of active sites from SiO2-NH2 due to the interactions between them occurred after 10 cycles.