The group Medical professional Resume Perform Considerations as well as Final results

From Stairways
Jump to navigation Jump to search

The objective of this study was to explore different approaches to communicating the positive predictive value (PPV) of cell-free DNA screening for fetal trisomy.
PPV was established for 4 maternal age-groups (<30, 30-34, 35-39, and >39 years) from clinical laboratory data and compared to the modeled PPV from an online calculator. In women under 35, PPV was compared between 2 subsets, high risk and low risk, classified based on the diagnosis codes that were provided to the laboratory.
In 503 high-probability trisomy 21 results, the observed PPVs in the 4 age-groups were 97.0% (<30), 98.9% (30-34), 99.5% (35-39), and 96.3% (>39), all higher than those from the calculator, which ranged from 53 to 95%. Likewise, PPVs were 77.4-97.0% observed versus 16-78% modeled in 131 trisomy 18 cases and 30.4-80.0% observed versus 6-61% modeled in 80 trisomy 13 cases. In women under 35, PPV for the trisomies combined was 90.4% in the higher-risk group compared to 79.7% in the lower-risk group.
Modeling PPV based on maternal age will provide an underestimate in a clinical population. Although the PPV is higher for the samples with higher-risk diagnosis codes, the information that accompanies clinical samples is too general to model PPV for a specific patient.
Modeling PPV based on maternal age will provide an underestimate in a clinical population. Although the PPV is higher for the samples with higher-risk diagnosis codes, the information that accompanies clinical samples is too general to model PPV for a specific patient.Diffusion tensor-magnetic resonance electrical impedance tomography (DT-MREIT) is an imaging modality to obtain low-frequency anisotropic conductivity distribution employing diffusion tensor imaging and MREIT techniques. DT-MREIT is based on the linear relationship between the conductivity and water self-diffusion tensors in a porous medium, like the brain white matter. Several DT-MREIT studies in the literature provide cross-sectional anisotropic conductivity images of tissue phantoms, canine brain, and the human brain. In these studies, the conductivity tensor images are reconstructed using the diffusion tensor and current density data acquired by injecting two linearly independent current patterns. In this study, a novel reconstruction algorithm is devised for DT-MREIT to reconstruct the conductivity tensor images using a single current injection. Therefore, the clinical applicability of DT-MREIT can be improved by reducing the total acquisition time, the number of current injection cables, and contact electrodes to half by decreasing the number of current injection patterns to one. The proposed method is evaluated utilizing simulated measurements and physical experiments. The results obtained show the successful reconstruction of the anisotropic conductivity distribution using the proposed single current DT-MREIT.Simultaneous acquisition of cone beam CT (CBCT) projections using both the kV and MV imagers of an image guided radiotherapy (IGRT) system reduces set-up scan times -- a benefit to lung cancer radiation oncology patients -- but increases noise in the 3D reconstruction. In this article, we present a kV-MV scan time reduction technique that uses two noise-reducing measures to achieve superior performance. The first is a high DQE multi-layer MV imager prototype. The second is a beam hardening correction algorithm which combines poly-energetic modeling with edge-preserving, regularized smoothing of the projections. Performance was tested in real acquisitions of the Catphan 604 and a thorax phantom. Percent noise was quantified from voxel values in a soft tissue volume of interest (VOI) while edge blur was quantified from a VOI straddling a boundary between air and soft material. Comparisons in noise/resolution performance trade-off were made between our proposed approach, a dose-equivalent kV-only scan, and a kV-MV reconstruction technique previously published by Yin et al. this website (2005 Med. Phys. (32) 9). The proposed technique demonstrated lower noise as a function of spatial resolution than the baseline kV-MV method, notably a 50% noise reduction at typical edge blur levels. Our proposed method also exhibited fainter non-uniformity artifacts and in some cases superior contrast. Overall, we find that the combination of a multi-layer MV imager, acquiring at a LINAC source energy of 2.5 MV, and a denoised beam hardening correction algorithm enables noise, resolution, and dose performance comparable to standard kV-imager only set-up CBCT, but with nearly half the gantry rotation time.Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic topological insulator SnBi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.Hepatic ischemia/reperfusion injury (IRI) seriously affects the prognosis of patients undergoing liver surgery. Liver-resident Kupffer cells have been reported to promote IRI. Nanomedicines are known to be effective in the treatment of liver diseases, however, Kupffer cell-targeting nanomedicines for the treatment of IRI are yet to be developed. As potential bioimaging nanomaterials, rare earth upconversion nanoparticles (UCNs) have been found to specifically deplete Kupffer cells, but the underlying mechanism is unknown. In this study, we found that UCNs specifically depleted Kupffer cells by pyroptosis, while the co-administration of the caspase-1 inhibitor VX-765 rescued the UCN-induced Kupffer cell pyroptosis in mice. Furthermore, the pre-depletion of Kupffer cells by the UCNs significantly suppressed the release of inflammatory cytokines and effectively improved hepatic IRI. The rescue of the pyroptosis of the Kupffer cells by VX-765 abrogated the protective effect of UCNs on the liver. These results suggest that UCNs are highly promising for the development of Kupffer cell-targeting nanomedicines for intraoperative liver protection.CsPbI3 inorganic perovskites with ideal bandgap and much enhanced thermal stability compared with organic-inorganic hybrid perovskites, have attracted much interest in the field of solar cells. The performances of solar cells highly depend on the quality of perovskite films, yet the research on fabrication methods of inorganic perovskites is far below that of organic-inorganic hybrid counterparts. Antisolvent engineering is a widely used method in controlling the morphology and crystallinity of organic-inorganic hybrid perovskites. Its effect varies with parameters such as the physicochemical properties of antisolvents and the compositions of perovskite precursors. Specially, there lacks a comprehensive study comparing different antisolvents used in low-temperature processed CsPbI3 from dimethylammonium-based precursors. In this work, we used three different antisolvents to control the growth of CsPbI3 films in a low-temperature ( less then 200 °C) processed procedure and systematically compared the properties of resultant films. The green antisolvent ethyl acetate (EA) engineered CsPbI3 films exhibit improved morphology and crystallinity as well as reduced defects, compared with the counterparts processed without antisolvent or those with widely employed toxic antisolvents toluene and chlorobenzene. The EA antisolvent engineering results in efficient CsPbI3 perovskite solar cells with a champion power conversion efficiency of 8.8%. Our work thus provides a green and viable way to prepare high quality CsPbI3 perovskite films for optoelectronic applications.For sodium ion batteries, the fabrication of nanocrystal anode materials has been identified as a satisfactory strategy to improve electrochemical performance and maintain the structural integrity of electrodes. However, the issues of agglomeration and serious volume variation have always existed within the process of charging/discharging in anode materials. link2 In this work, a series of composites of nickel sulfide nanoparticles decorated on reduced graphene oxide nanosheets (denoted as NiS2@rGO) were successfully synthesized via a simple one-step hydrothermal method under different temperatures. The strategy of confining nickel sulfide nanoparticles within the interlayer of graphene nanosheets can not only avoid the agglomeration, but also alleviate the volume change to some extent in electrode materials. For sodium ion storage, the NiS2@rGO synthesized at 160 °C exhibited a higher reversible capacity and better rate capability.This review features state-of-the-art in situ and operando electron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length ion of these techniques and our perspectives on the field's future directions will also be discussed.A practical neutron energy dependent RBE model has been developed, based on the relationship between a mono-energetic neutron energy and its likely recoil proton energy. Essentially, the linear energy transfer (LET) values of the most appropriate recoil proton energies are then used to modify the linear quadratic model radiosensitivities (α and β) from their reference LET radiation values to provide the RBE estimates. link3 Experimental neutron studies published by Hall (including some mono-energetic beams ranging from 0.2 to 15 MeV), Broerse, Berry, and data from the Clatterbridge and Detroit clinical neutron beams, which all contain some data from a spectrum of neutron energies, are used to derive single effective neutron energies (NEeff) for each spectral beam. These energies yield a recoil proton spectrum, but with an effective mean proton energy (being around 50% of NEeff). The fractional increase in LET is given by the recoil proton LET divided by the proton (LETU) value which provides the highest RBE. This ratio is then used to determine the change in the linear-quadratic model α and β parameters, from those of the reference radiation, to estimate the RBE.