The part involving Progestogens in Menopause Bodily hormone Treatment

From Stairways
Jump to navigation Jump to search

Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.Aiming at the difficulty of integrated repair of osteochondral tissue, we designed a hybrid hydrogel scaffold that mimicked the microenvironment of osteochondral niches. Besides, the nano-hydroxyapatite (nHAP) was specially introduced into the hydrogel for its natural ability to promote bone regeneration. The hydrogel also exhibited good toughness (7500 KJ/m3), strength (1000 kPa), viscoelasticity, and in vitro cell experiments showed that hydrogels had quite good cytocompatibility (near 100 % viability). The results of the three-dimensional (3D) cell culture also proved that the survival rate of the cells in the hybrid hydrogels doped with nHAP and dispersion were the highest. In vitro RT-qPCR experiments proved that after being cultured in hydrogel scaffolds doped with nHAP, bone mesenchymal stem cells (BMSCs) could express genes related to osteoblasts and chondrocytes. As a result, this hydrogel provides a general for developing alternative materials applicable for stem cells differentiation and even osteochondral tissue engineering.Unsaturated guluronate oligosaccharide (GOS) was prepared from alginate-derived homopolymeric blocks of guluronic acid by alginate lyase-mediated depolymerization. In this study, a GOS-based water-in-oil-in-water (W1/O/W2) nanoemulsion was prepared, and different influencing factors were investigated. First, linseed oil was selected as the optimal carrier oil. Then, other optimal conditions of the GOS nanoemulsion were determined based on response surface methodology (RSM). CA3 manufacturer Under the optimal conditions, the obtained GOS nanoemulsion showed a spherical structure with an average particle size of 273.93 ± 8.91 nm, and its centrifugal stability was 91.37 ± 0.45 %. Moreover, the GOS nanoemulsion could achieve the aim of sustained release in vitro and be stably stored at 4°C for at least 5 days. This work prepared a novel GOS-based W1/O/W2 nanoemulsion that may effectively address the storage difficulties of unsaturated GOS and provides a valuable contribution to the application of GOS in the food and medicine fields.Polydopamine (PDA) is emerging as an attractive photothermal agent due to its good photothermal performance and excellent biocompatibility. However, without chemical modification, PDA is normally unstable and usually leached out from the constructed biomaterials, realistically limiting its application space. Here, we constructed a new hydrogel dressing with robust and stable photothermal performance by introduction of ε-Polylysine (ε-PL) into agarose/PDA matrix to efficiently lock PDA. By optimizing PDA/ε-PL rational dose in agarose network structure, a hybrid agarose/PDA/ε-PL hydrogel (ADPH) with stable photothermal functionality and desirable physicochemical properties could be achieved. ADPH possessed satisfactory microbicidal efficacy in vivo, which enabled the bacteria-infected skin wound to be cured quickly by successful suppressing inflammation, accelerating collagen deposition and promoting angiogenesis in a bacterial-infected wound model. Collectively, this study illustrates a simple, convenient but powerful strategy to design functionally stable ADPH dressing for treating dermal wounds, which could open vistas in clinical wound management.Electrically conducting self-healing scaffolds are known as a new series of intelligent biomaterial for regulating Human Adipose Mesenchymal Stem Cells biological behaviors, especially their differentiation to bone cells. Herein, we developed a novel hydrophilic semi-conductive chitosan derivative (CP) and loaded it into the self-healing waterborne polyurethane structure, as a new osteogenic agent. The fabricated scaffolds exhibited excellent shape memory properties with shape fixity (> 97 %) and shape recovery ratio (> 98 %) with excellent self-healing value (> 93 %) at a temperature close to the body temperature. The results of MTT, cell attachment, alkaline phosphatase activity, and alizarin red staining analysis demonstrated that the CP-contained scaffolds promote proliferation of hADSCs and matrix mineralization. Also, by introducing the CP the gene expression level of COL-1, ALP, RUNX2, and OCN were significantly enhanced, in line with matrix mineralization. These multifunctional engineered constructs are promising biomaterials for repairing various bone defects.In this study, we present a facile, one-step method for the manufacturing of all-cellulose, layered membranes containing cellulose nanocrystals (CNC), TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibers (TO-CNF), or zwitterionic polymer grafted cellulose nanocrystals (CNC-g-PCysMA) as functional entities in combination with cellulose fibers and commercial grade microfibrillated cellulose. The presence of active sites such as hydroxyl, carbonyl, thioethers, and amines, gave the membranes high adsorption capacities for the metal ions Au (III), Co (II), and Fe (III), as well as the cationic organic dye methylene blue (MB). Furthermore, the membranes served as excellent metal-free catalysts for the decolorization of dyes via hydrogenation. A 3-fold increase of the hydrogenation efficiency for cationic dyes such as rhodamine B (RhB) and methylene blue was obtained in the presence of membranes compared to NaBH4 alone. Water-based processing, the abundance of the component materials, and the multifunctional characteristics of the membranes ensure their potential as excellent candidates for water purification systems.The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.Attributed to low cost, renewable, and high availability, cellulose-based aerogels are desirable materials for various applications. However, mechanical robustness and functionalization remain huge challenges. Herein, we synthesized a recoverable, anisotropic cellulose nanofiber (CNF) / chitosan (CS) aerogel via directional freeze casting and chemical cross-link process. The chitosan was performed as strength polymers to prohibits the shrinkage and retains the structural stability of 3D cellulose nanofiber skeleton, endowing the composite aerogel with satisfactory deformation recovery ability (without loss under 60 % stress cycled 100 times). The CNF/CS composite aerogel has ultralow density (∼8.4 mg/cm3), high temperature-invariant (above 300 °C) and high porosity (98 %). The CNF/CS aerogel demonstrates anisotropic thermal insulation properties with low thermal conductivity (28 mWm-1 K-1 in rational direction and 36 mW m-1 K-1 in the axial direction). link2 Moreover, the composite aerogel (water contact angle ∼148°) exhibited outstanding oil/water selectivity and high absorption capacity (82-253 g/g) for various oils and organic solvents. Therefore, the multifunctional CNF/CS composite aerogels are potential materials for thermal management and oil absorption applications.Silica nanoparticles (SNPs) dissolve in alkaline media, which limits their use in certain applications. link3 Here, we report a delayed dissolution of SNPs in strong alkali induced by zinc oxide (ZnO), an additive which also limits gelation of alkaline cellulose solutions. This allows incorporating high solid content of silica (30 wt%) in cellulose solutions with retention of their predominant viscous behavior long enough (ca. 180 min) to enable fiber wet spinning. We show that without addition of ZnO, silica dissolves completely, resulting in strong gelation of cellulose solutions that become unsuitable for wet spinning. With an increase of silica concentration, gelation of the solutions occurs faster. Employing ZnO, silica-rich regenerated cellulose fibers were successfully spun, possessing uniform cross sections and smooth surface structure without defects. These findings are useful in advancing the development of functional man-made cellulose fibers with incorporated silica, e.g., fibers with flame retardant or self-cleaning properties.The homeostasis between mitochondrial function and autophagy is crucial to the physiological activity of cancer cells, and its mechanism is conducive to the development of anti-tumor drugs. Here, we aimed to explore the effect and mechanism of Dendrobium officinale polysaccharide (DOP) on colon cancer cell line CT26. Our data showed that DOP significantly inhibited the proliferation of CT26 cells and elevated autophagy level. Moreover, DOP disrupted mitochondrial function through increasing reactive oxygen species (ROS) and reducing mitochondrial membrane potential (MMP), thereby impairing ATP biosynthesis, which activated AMPK/mTOR autophagy signaling. Intriguingly, the further experiments demonstrated that DOP-induced cytotoxicity, excessive autophagy and mitochondrial dysfunction were reversed after CT26 cells pretreated with antioxidant (N-acetyl-l-cysteine). Herein, these findings implied that DOP-induced mitochondrial dysfunction and cytotoxic autophagy repressed the propagation of CT26 cells via ROS-ATP-AMPK signaling, providing a new opinion for the study of antineoplastic drugs.