Treatment Problems throughout Displayed Nontuberculous Mycobacterial Infections Using Interferongamma Autoantibodies

From Stairways
Jump to navigation Jump to search

Bacterial leaf spot and bacterial leaf blight are global threats to the cultivation of cruciferous vegetables, and it is necessary to develop methods to easily detect, identify, and distinguish the causative pathogens Pseudomonas syringae pv. maculicola (Psm) and P. cannabina pv. alisalensis (Pca). Here, we used the sequence specificity of the exchangeable effector loci flanking the hrp gene cluster to design primers that can help detect and discriminate between Psm and Pca. Primers common to both bacteria (hrpK_fw1 and hrpK_fw2) were designed within hrpK at the end of the hrp gene cluster. Psm-specific primers (MAC_rv1 and MAC_rv2) were designed in hopPtoB1 and Pca-specific primers (ALS_rv1 and ALS_rv2) were designed in hopX1 adjacent to hrpK. PCR using hrpK_fw1 and MAC_rv1 or hrpK_fw2 and MAC_rv2 amplified DNA fragments of only Psm, P. syringae pv. tomato (causal agent of tomato bacterial speck), and P. syringae pv. spinaciae (causal agent of spinach bacterial leaf spot), among 76 strains of phytopathogenic bacteria. PCR using hrpK_fw1 and ALS_rv1 or hrpK_2 and ALS_rv2 amplified DNA fragments of only Pca. Multiplex PCR with these primers could easily distinguish Psm and Pca from bacterial colonies isolated on growth media and detect the pathogen in symptomatic leaves. Ruboxistaurin Multiplex nested PCR with the primers detected contamination in one Psm- and/or one Pca-infected seeds in 1000 seeds. These results suggest that these PCR primers could help detect and discriminate Psm and Pca. KEY POINTS • We investigated Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. • Novel primers common to both bacteria were designed following genome comparison. • Multiplex PCR with new primers could discriminate Psm and Pca.Lactic acid bacteria (LAB) are important in food fermentation and may enhance overall host health. Previous studies to explore LAB metabolism mainly focused on the genera Lacticaseibacillus and Lactococcus. Pediococcus pentosaceus, historically recognized as an important food fermentation bacterial strain, can produce bacteriocins and occasionally demonstrated probiotic functionalities. This study thoroughly surveyed the growth kinetic of three P. pentosaceus isolates in various culture formulations, especially in fructooligosaccharide (FOS), xylooligosaccharide (XOS), or konjac mannooligosaccharide (KMOS) conditions. Results showed that P. pentosaceus effectively metabolized KMOS, the culture of which led to 23.6-fold population increase. However, FOS and XOS were less metabolized by P. pentosaceus. On functional oligosaccharide cultures, P. pentosaceus could result in higher population proliferation, more acidified fermentation environment, and higher glycoside hydrolysis activities in the culture. RNA-Seq analysis classified 1572 out of 1708 putative genes as mRNA-coding genes. The dataset also revealed that the three functional oligosaccharides led to extensive global functional gene regulations. Phosphate conservation and utilization efficiency enhancement may serve as a leading transcriptional regulation direction in functional oligosaccharide metabolisms. In summary, these discovered metabolic characteristics could be employed to support future studies. KEY POINTS • Konjac mannooligosaccharides effectively promoted P. pentosaceus proliferation. • Functional genes were highly regulated in functional oligosaccharide utilization. • Phosphate conservation was an important transcriptional regulation direction.Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 μg/mL TTc, 20 μg/mL CRM197 antigens, and 500 μg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus. KEY POINTS • We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector. • The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.Rhodococcus erythropolis S43 is an arsenic-tolerant actinobacterium isolated from an arsenic contaminated soil. It has been shown to produce siderophores when exposed to iron-depleting conditions. In this work, strain S43 was shown to have the putative heterobactin production cluster htbABCDEFGHIJ(K). To induce siderophore production, the strain was cultured in iron-depleted medium in presence and absence of sodium arsenite. The metabolites produced by S43 in the colorimetric CAS and As-mCAS assays, respectively, showed iron- and arsenic-binding properties reaching a chelating activity equivalent to 1.6 mM of desferroxamine B in the supernatant of the culture without arsenite. By solid-phase extraction and two subsequent HPLC separations from both cultures, several fractions were obtained, which contained CAS and As-mCAS activity and which were submitted to LC-MS analyses including fragmentation of the major peaks. The mixed-type siderophore heterobactin B occurred in all analyzed fractions, and the mass of the "Carrano heterobactin A" was detected as well. In addition, generation of a molecular network based on fragment spectra revealed the occurrence of several other compounds with heterobactin-like structures, among them a heterobactin B variant with an additional CH2O moiety. 1H NMR analyses obtained for preparations from the first HPLC step showed signals of heterobactin B and of "Carrano heterobactin A" with different relative amounts in all three samples. In summary, our results reveal that in R. erythropolis S43, a pool of heterobactin variants is responsible for the iron- and arsenic-binding activities. KEY POINTS • Several heterobactin variants are the arsenic-binding compounds in Rhodococcus erythropolis S43. • Heterobactin B and the compound designated heterobactin A by Carrano are of importance. • In addition, other heterobactins with ornithine in the backbone exist, e.g., the new heterobactin C.